Алгоритм оптимизации ресурсного обеспечения проекта с учетом нечетких рекомендаций экспертов по срокам начала работ
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Algorithm for optimizing project resource allocation considering fuzzy expert recommendations on task start times

Azarnova T.V.,  idIvanova E.V.

UDC 519.86
DOI: 10.26102/2310-6018/2025.49.2.037

  • Abstract
  • List of references
  • About authors

This article proposes an algorithm for evaluating project resource allocation that takes into account various fuzzy expert recommendations regarding the start times of tasks within float constraints, aiming to select the optimal set of expert suggestions. To determine the float constraints for task start and finish times, the classical critical path method is used. Expert recommendations on task start times are modeled as fuzzy trapezoidal or triangular numbers defined along the time axis. Based on the fuzzy start and finish times of project tasks, a fuzzy representation of the probability that a task will be performed at a specific moment is constructed. Building alpha-cuts for this fuzzy probability representation allows the identification of intervals, within float constraints, during which a task is likely to be performed at a certain level of fuzzy probability, thus enabling resource planning for those periods. The obtained results allow for: evaluating the expert recommendations that are optimal in terms of resource distribution; minimizing subcontracting needs for task execution; and calculating the associated subcontracting costs. The proposed algorithmic and software solution can serve as an effective decision support tool in the implementation of multi-component projects.

1. Brucker P., Drexl A., Möhring R., Neumann K., Pesch E. Resource-Constrained Project Scheduling: Notation, Classification, Models, and Methods. European Journal of Operational Research. 1999;112(1):3–41. https://doi.org/10.1016/S0377-2217(98)00204-5

2. Kreter S., Schutt A., Stuckey P.J. Using Constraint Programming for Solving RCPSP/Max-Cal. Constraints. 2017;22(3):432–462. https://doi.org/10.1007/s10601-016-9266-6

3. Vanhoucke M., Coelho J. Resource-Constrained Project Scheduling with Activity Splitting and Setup Times. Computers & Operations Research. 2019;109:230–249. https://doi.org/10.1016/j.cor.2019.05.004

4. Chang T.C., Ibbs C.W., Crandall K.C. Network Resource Allocation with Support of a Fuzzy Expert System. Journal of Construction Engineering and Management. 1990;116(2):239–260. https://doi.org/10.1061/(ASCE)0733-9364(1990)116:2(239)

5. Rezakhani P. Project Scheduling and Performance Prediction: A Fuzzy-Bayesian Network Approach. Engineering, Construction and Architectural Management. 2022;29(6):2233–2244. https://doi.org/10.1108/ECAM-07-2020-0540

6. S A.S.P., Paul A. Fuzzy Logic in Construction Project Scheduling: A Review. International Research Journal of Engineering and Technology. 2008;5(11):752–755.

7. Dorn J., Kerr R., Thalhammer G. Reactive Scheduling: Improving the Robustness of Schedules and Restricting the Effects of Shop Foor Disturbances by Fuzzy Reasoning. International Journal of Human–Computer Studies. 1995;42(6):687–704. https://doi.org/10.1006/ijhc.1995.1031

8. Cheng Ch.-B., Lo Ch.-Yu. Multi-Project Scheduling by Fuzzy Combinatorial Auction. In: 2017 3rd IEEE International Conference on Cybernetics (CYBCONF), 21–23 June 2017, Exeter, UK. IEEE; 2017. P. 1–6. https://doi.org/10.1109/CYBConf.2017.7985794

9. Ladnykh I.A., Ibadov N. Estimating the Duration of Construction Works Using Fuzzy Modeling to Assess the Impact of Risk Factors. Applied Sciences. 2024;14(9). https://doi.org/10.3390/app14093847

10. Plebankiewicz E., Karcińska P. Model for Supporting Construction Workforce Planning Based on the Theory of Fuzzy Sets. Applied Sciences. 2024;14(4). https://doi.org/10.3390/app14041655

Azarnova Tatiana Vasilievna
Doctor of Engineering Sciences, Professor

Voronezh State University

Voronezh, Russian Federation

Ivanova Ekaterina Vyacheslavovna

ORCID |

Voronezh State University

Voronezh, Russian Federation

Keywords: network graph of the project, critical path, fuzzy expert recommendations, work completion dates on project, project resource optimization

For citation: Azarnova T.V., Ivanova E.V. Algorithm for optimizing project resource allocation considering fuzzy expert recommendations on task start times. Modeling, Optimization and Information Technology. 2025;13(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1941 DOI: 10.26102/2310-6018/2025.49.2.037 (In Russ).

24

Full text in PDF

Received 03.05.2025

Revised 25.05.2025

Accepted 04.06.2025