Алгоритм поиска точного контура ядер клеток на снимках клеток буккального эпителия
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Algorithm for searching for the exact contour of cell nuclei in images of buccal epithlial cells

idLimanovskaya O.V., idGavrilov I.V., idMeshchaninov V.N., idManakova N.S., idReshetnikov E.D.

UDC 51-76
DOI: 10.26102/2310-6018/2026.52.1.006

  • Abstract
  • List of references
  • About authors

The article develops an algorithm for searching for the exact contour of cell nuclei in images of buccal epithelial cells stained by Giemse. The images of the cells were obtained using a Carl Zeiss Primo Star 415500-011 microscope with 1000x magnification. The algorithm is developed in Python 3.11 using the OpenCV computer vision library. The algorithm consists of two stages. The first stage involves searching for the boundaries of the cell nucleus, selecting the nucleus into a rectangular area and saving it to a separate jpg file. At the second stage, the boundaries of the cell nucleus are clarified in the saved file with the cell nucleus and a mask is applied to the image of the cell nucleus along the specified contours. Images of cell nuclei with refined contours are saved in separate jpg files. The obtained images of cell nuclei with a mask applied can be used to study the morphology of the cell nucleus, including in order to search for markers of the rate of aging. The algorithm can be used not only to obtain files with images of the cell nucleus, but can also be integrated into an algorithm for analyzing the morphology of the cell nucleus, used to search for new markers, for example, the process of age-related cell involution and the body as a whole in gerontological research.

1. Areshidze D.A. Mechanisms of the keeping and change of forms and sizes of the cell nuclei (review). Morphological Newsletter. 2022;30(3):73–80. (In Russ.). https://doi.org/10.20340/mv-mn.2022.30(3).670

2. Chen Sh., Zhao M., Wu G., Yao Ch., Zhang J. Recent Advances in Morphological Cell Image Analysis. Computational and Mathematical Methods in Medicine. 2012;2012. https://doi.org/10.1155/2012/101536

3. Liu Ch., Shang F., Ozolek J.A., Rohde G.K. Detecting and segmenting cell nuclei in two‑dimensional microscopy images. Journal of Pathology Informatics. 2016;7(1). https://doi.org/10.4103/2153-3539.192810

4. Lukashevich М.М., Starovoitov V.V. An approach to cell nuclei counting in histological image analysis. System Analysis and Applied Information Science. 2016;(2):37–42. (In Russ.).

5. Astakhov A.S., Bumagin V.V. Analysis of the efficiency of the image processing algorithms for biological micro objects recognition in the histological sections. Engineering Journal of Don. 2017;(4). (In Russ.). http://www.ivdon.ru/en/magazine/archive/n4y2017/4515

6. Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics. 1979;9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

7. Duda R.O., Hart P.E. Pattern Classification and Scene Analysis. New York: Wiley; 1973. 482 p.

8. Arfken G.B. Mathematical Methods for Physicists. San Diego: Academic Press; 1985. 985 p.

9. Canny J. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1986;PAMI-8(6):679–698. https://doi.org/10.1109/TPAMI.1986.4767851

10. Myakotnykh V., Kharitonova M., Sidenkova A., Meshchaninov V. Assessment of the condition of the oral cavity in early diagnosis of cognitive deficits. Actual Problems in Dentistry. 2022;18(2):173–180. (In Russ.). https://doi.org/10.18481/2077-7566-2022-18-2-173-180

11. Bazarnyi V.V., Mandra Yu.V., Sidenkova A.P., et al. Age features of buccal epithelium in practically healthy people. Russian Clinical Laboratory Diagnostics. 2022;67(6):345–349. (In Russ.). https://doi.org/10.51620/0869-2084-2022-67-6-345-349

Limanovskaya Oksana Viktorovna
Candidate of Chemical Sciences
Email: limanovskaya@mail.ru

ORCID |

Specialized Medical Care Center of Medical Cell Technology Institute

Yekaterinburg, Russian Federation

Gavrilov Iliya Valerievich
Candidate of Biological Sciences

ORCID |

Specialized Medical Care Center of Medical Cell Technology Institute
Ural State Medical University of the Ministry of Health of the Russian Federation

Yekaterinburg, Russian Federation

Meshchaninov Viktor Nikolaevich
Doctor of Medical Sciences, Professor

ORCID |

Specialized Medical Care Center of Medical Cell Technology Institute
Ural State Medical University of the Ministry of Health of the Russian Federation

Yekaterinburg, Russian Federation

Manakova Nadezhda Stanislavovna

ORCID |

Specialized Medical Care Center of Medical Cell Technology Institute

Yekaterinburg, Russian Federation

Reshetnikov Evgenij Dmitrievich

ORCID |

Specialized Medical Care Center of Medical Cell Technology Institute

Yekaterinburg, Russian Federation

Keywords: computer vision, openCV, search for cell nucleus contours, image segmentation, search for contours in an image, gerontology

For citation: Limanovskaya O.V., Gavrilov I.V., Meshchaninov V.N., Manakova N.S., Reshetnikov E.D. Algorithm for searching for the exact contour of cell nuclei in images of buccal epithlial cells. Modeling, Optimization and Information Technology. 2026;14(1). URL: https://moitvivt.ru/ru/journal/pdf?id=2111 DOI: 10.26102/2310-6018/2026.52.1.006 (In Russ).

7

Full text in PDF

Received 24.10.2025

Revised 14.01.2026

Accepted 21.01.2026