Анализ эффективности самоконфигурируемого бинарного генетического алгоритма с модифицированным методом динамической коррекции области поиска
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Efficiency analysis of a self-configuring binary genetic algorithm with a modified method of dynamic correction of the search space

Malashin I.P.,  idSopov E.A.

UDC 519.854.2
DOI: 10.26102/2310-6018/2026.53.2.001

  • Abstract
  • List of references
  • About authors

This paper presents a modification of the self-configuring genetic algorithm (SelfCGA) aimed at improving search efficiency in global optimization problems. The proposed approach combines dynamic correction of the search domain with phenotype clustering of the population, which makes it possible to identify promising regions of the solution space more effectively. The use of clustering helps maintain population diversity and reduces the risk of premature convergence to local optima. To evaluate the proposed modification, computational experiments were conducted using the CEC2017 benchmark suite with problem dimensions of 10, 30, and 50. Each algorithm was executed 50 independent times, ensuring statistical reliability of the results. The performance was assessed by comparing average and best fitness values, as well as by analyzing the convergence dynamics during the evolutionary process. The experimental results demonstrate that the modified SelfCGA with dynamic correction of the search domain reaches a stabilization state – where further improvements during the evolutionary search become negligible – in fewer generations for most benchmark functions. This advantage remains evident even as the dimensionality of the search space increases. The proposed modification does not require manual parameter tuning and does not increase the structural complexity of the base SelfCGA, which makes it well suited for practical applications.

1. Khritonenko D.I., Semenkin E.S. Samokonfiguriruemyi evolyutsionnyi algoritm avtomaticheskogo proektirovaniya rekurrentnykh neironnykh setei. In: Informatsionno-telekommunikatsionnye sistemy i tekhnologii: Vserossiiskaya nauchno-prakticheskaya konferentsiya, 16–17 October 2015, Kemerovo, Russia. Kemerovo: T.F. Gorbachev Kuzbass State Technical University; 2015. P. 220. (In Russ.).

2. Sherstnev P.A., Semenkin E.S. SelfCSHAGA: self-configuring genetic optimization algorithm with the success-history based adaptation. Herald of the Bauman Moscow State Technical University. Series: Instrument Engineering. 2025;(2):122–139. (In Russ.).

3. Semenkin E., Semenkina M. Self-configuring Genetic Algorithm with Modified Uniform Crossover Operator. In: Advances in Swarm Intelligence: Third International Conference, ICSI 2012: Proceedings: Part I, 17–20 June 2012, Shenzhen, China. Berlin, Heidelberg: Springer; 2012. P. 414–421. https://doi.org/10.1007/978-3-642-30976-2_50

4. Malashin I.P., Tynchenko V.S. Application of cluster analysis methods for dynamic search space adjustment in genetic algorithms. Siberian Aerospace Journal. 2025;26(3):318–333. https://doi.org/10.31772/2712-8970-2025-26-3-318-333

5. Malashin I.P. A procedure for dynamic modification of binary encoding scheme in genetic algorithms. Modeling, Optimization and Information Technology. 2025;13(3). (In Russ.). https://doi.org/10.26102/2310-6018/2025.50.3.040

6. Semenkin E., Semenkina M. Self-configuring genetic programming algorithm with modified uniform crossover. In: 2012 IEEE Congress on Evolutionary Computation, 10–15 June 2012, Brisbane, QLD, Australia. IEEE; 2012. P. 1–6. https://doi.org/10.1109/CEC.2012.6256587

7. Osipova U.A., Lavrov D.N. Application of cluster analysis by the k-means method for the classification of scientific texts. Mathematical Structures and Modeling. 2017;(3):108–121. (In Russ.). https://doi.org/10.24147/2222-8772.2017.3.108-121

8. Stanovov V., Akhmedova Sh., Semenkin E. LSHADE Algorithm with Rank-Based Selective Pressure Strategy for Solving CEC 2017 Benchmark Problems. In: 2018 IEEE Congress on Evolutionary Computation (CEC), 08–13 July 2018, Rio de Janeiro, Brazil. IEEE; 2018. P. 1–8. https://doi.org/10.1109/CEC.2018.8477977

9. Miller B.L., Goldberg D.E. Genetic Algorithms, Tournament Selection, and the Effects of Noise. Complex Systems. 1995;9(3):193–212.

10. Ahn Ch.W., Ramakrishna R.S. Elitism-based compact genetic algorithms. IEEE Transactions on Evolutionary Computation. 2003;7(4):367–385. https://doi.org/10.1109/TEVC.2003.814633

Malashin Ivan Pavlovich

Bauman Moscow State Technical University

Moscow, Russian Federation

Sopov Evgeni Alexandrovich
Doctor of Engineering Sciences, Docent

ORCID |

Reshetnyov Siberian State University of Science and Technology

Krasnoyarsk, Russian Federation

Keywords: global optimization, self-configuring algorithms, search space adaptation, population clustering, dynamic correction of the search domain

For citation: Malashin I.P., Sopov E.A. Efficiency analysis of a self-configuring binary genetic algorithm with a modified method of dynamic correction of the search space. Modeling, Optimization and Information Technology. 2026;14(2). URL: https://moitvivt.ru/ru/journal/pdf?id=2150 DOI: 10.26102/2310-6018/2026.53.2.001 (In Russ).

27

Full text in PDF

Received 16.12.2025

Revised 26.01.2026

Accepted 05.02.2026