Анализ чувствительности в большом для нелинейных фильтров Калмана при оценке параметров навигационного сигнала
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Sensitivity analysis for nonlinear Kalman filters in navigation signal parameter estimation

idGlushankov E.I., Sudenkova A.V.,  Kondrashov Z.K. 

UDC 621.391:621.396
DOI: 10.26102/2310-6018/2026.53.2.004

  • Abstract
  • List of references
  • About authors

Nonlinear estimation methods are used for filtering navigation signals, the quality of which depends on the accuracy of the chosen state and observation models. In situations where model parameters are unknown or change during observation, it is necessary to resort to adaptive filtering algorithms. The need for more complex approaches is determined by how much the deviation of a particular parameter affects the filtering result. To assess the quality of filtering, criteria such as signal-to-noise ratio gain or root mean square error are typically used; however, these are not intended to determine the influence of the magnitude of parameter deviations from their true values on the estimation error variance, unlike a quality indicator such as sensitivity. The article discusses the analysis of filtering sensitivity to changes in observation and state parameters under the influence of white noise for Kalman filters of various accuracy orders and a filter optimal by the criterion of maximum a posteriori probability density. Simulation is carried out by numerical methods. The derivation of the large-scale sensitivity equation for the nonlinear Kalman filter in analytical form is presented. As a result, dependencies of sensitivity on the magnitude of the discrepancy between the true and assumed models were obtained, as well as the stability of the filtering algorithms to this discrepancy. The results can be used to formulate requirements for permissible model parameter deviations and to check the filtering quality under conditions of their a priori uncertainty.

1. Sagе А., Мelse J. Estimation Theory with Application to Communication and Control. Moscow: Svyaz'; 1976. 496 p. (In Russ.).

2. Barreto A., Adjouadi M., Ortega F.R., O-Larnnithipong N. Intuitive Understanding of Kalman Filtering with MATLAB®. Boca Raton: CRC Press; 2021. 229 p.

3. Jazwinski A.H. Stochastic Processes and Filtering Theory. Mineola: Courier Corporation; 2007. 376 p.

4. Klovsky D.D., Kontorovich V.Ya., Shirokov S.M. Models of continuous communication channels based on stochastic differential equations. Moscow: Radio i svyaz'; 1984. 248 p. (In Russ.).

5. Glushankov E.I., Kontorovich V.Ya., Karavaev D.А. Signal Modeling in Continuous Communictaion Channels in the Form of Stochastic Differential Equations. Systems of Control, Communication and Security. 2023;(4):1–35. (In Russ.). https://doi.org/10.24412/2410-9916-2023-4-1-35

6. Madjarov N., Mihaylova L. Kalman filter sensitivity with respect to parametric noises uncertainty. Kybernetika. 1996;32(3):307–322.

7. Glushankov E.I., Kondrashov Z.K., Kontorovich V.Ya., Sudenkova A.V. Filtering of navigation signals in radio navigation systems. Journal of Radio Electronics. 2025;(5). (In Russ.). https://doi.org/10.30898/1684-1719.2025.5.4

8. Saha M., Ghosh R., Goswami B. Robustness and Sensitivity Metrics for Tuning the Extended Kalman Filter. IEEE Transactions on Instrumentation and Measurement. 2013;63(4):964–971. https://doi.org/10.1109/TIM.2013.2283151

9. Cicci D.A., Ballard G.H. Sensitivity of an extended Kalman filter 1. Variation in the number of observers and types of observations. Applied Mathematics and Computation. 1994;66(2–3):233–246. https://doi.org/10.1016/0096-3003(94)90119-8

10. Jordana A., Meduri A., Arlaud E., Carpentier J., Righetti L. Risk-Sensitive Extended Kalman Filter. In: 2024 IEEE International Conference on Robotics and Automation (ICRA), 13–17 May 2024, Yokohama, Japan. IEEE; 2024. P. 10450–10456. https://doi.org/10.1109/ICRA57147.2024.10611266

Glushankov Evgeny Ivanovich
Doctor of Engineering Sciences, Professor
Email: glushankov57@gmail.com

Scopus | ORCID | eLibrary |

The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

St. Petersburg, Russian Federation

Sudenkova Anastasia Vyacheslavovna

The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

St. Petersburg, Russian Federation

Kondrashov Zahar Konstantinovich

JSC «Concern Automatics»

Moscow, Russian Federation

Keywords: kalman filter, stochastic differential equations, sensitivity, radio navigation signal, white noise

For citation: Glushankov E.I., Sudenkova A.V., Kondrashov Z.K. Sensitivity analysis for nonlinear Kalman filters in navigation signal parameter estimation. Modeling, Optimization and Information Technology. 2026;14(2). URL: https://moitvivt.ru/ru/journal/pdf?id=2170 DOI: 10.26102/2310-6018/2026.53.2.004 (In Russ).

7

Full text in PDF

Received 29.12.2025

Revised 06.02.2026

Accepted 11.02.2026