Keywords: beacon system, observation, navigation, positioning, observability, conditionality, range
DYNAMIC ADJUSTMENT OF MULTIPOSITION OBSERVING SYSTEM
UDC 519.68:15:681.5
DOI:
Current paper is about problem observation system based on range or range difference measurer. The paper discusses the formulation and approaches to the solution of the two-coordinate task of the exhibition (local coordinate binding) of a multi-position system intended for monitoring mobile objects for various special purposes (underwater, surface, surface, air, etc.). Such systems continue to be relevant both for traditional navigation tasks and for new types of surveillance tasks, for example, navigation of mobile devices based on GSM or WiFi data. The mathematical model of the exhibition problem based on equations of the "state-measurement" type of continuous type and finite-dimensional representations of the method of least squares is formulated. Because of the initial nonlinearity of the problem, it is proposed to linearize it about some support solution that characterizes the a priori notions of the state of the observation system. Attention is paid to the problem of resolvability of the problem from the point of view fundamental resolvability (observability) and resolvability in conditions of instrumental measurement errors. The first aspect of solvability is interpreted by the completeness of the rank of the corresponding system of linear algebraic equations, the second by the conditionality of the problem and the convergence of the iterative estimation procedure. The results of numerical simulation of the problem for typical situations are presented. It is shown that achievable accuracy of the exhibition is sufficient for a qualitative solution of navigational problems.
1. V.S. Kondratyev, A.F. Kotov, L.N. Marcov Mnogoposicionnye radiotehnicheskie systemy - M.: Radio i svyaz, 1987.
2. Ageev M.D., Kasatkin B.A., Kiselev L.V. Avtomaticheskie podvodnye apparaty. - L.: Sudostroenie, 1981.
3. Shebshaevich V.S. Setevye sputnikovye radionavigacionnye sistemy. - M.: Radio i svjaz', 1993.
4. Gladskih E.P., Kostin V.N., Maksimov V.A., Repin Ju.M. Razvitie sredstv navigacionnogo oborudovanija pribrezhnoj zony Rossijskoj Federacii v sootvetstvii s koncepciej e-navigacii // Navigacija i gidrografija. - 2016. - No.43. – pp. 13-21.
5. Katenin V.A., Dmitriev V.I. Navigacionnoe obespechenie sudovozhdenija. - M.: Akademkniga, 2006.
6. Lentarjov A.A. Sistemy upravlenija dvizheniem sudov. - Kaliningrad: Vsesojuznyj institut povyshenija kvalifikacii Minrybhoza SSSR, 1985.
7. Urlichich Ju.M. Perspektivy razvitija sistemy GLONASS // T-Comm: Telekommunikacii i transport. - No. S2. - 2010. – pp. 10-14.
8. Smetanin S.I., Ignatjuk V.A., Ganjushkin A.L. Sposob organizacii rasshirennoj sistemy sputnikovogo GPS-monitoringa // Informacionnoizmeritel'nye i upravljajushhie sistemy. – 2015. - No.12. – pp.62-66.
9. Smetanin S.I., Ignatjuk V.A., Evstifeev A.A. Sposob realizacii programmnoj veb-chasti sistemy sputnikovogo monitoringa // Informacionnye tehnologii. – 2015. – V.21. – No.6. – pp. 448–455.
10. Derjabin V.V., Sazonov A.E. Nejro-nechjotkaja model' schislenija puti sudna // Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova. – 2015. – No.4. – pp. 1–16.
11. Devjatisil'nyj A.S., Dorozhko V.M., Grinjak V.M. Informacionnotehnologicheskie aspekty obespechenija bezopasnosti dvizhenija na morskih akvatorijah // Nauchno-tehnicheskaja informacija. Serija 2: Informacionnye processy i sistemy. - 2003. - No.7. - pp. 11.
12. Devjatisil'nyj A.S., Dorozhko V.M., Grinjak V.M., Kirichenko O.V., Loskutov N.V. Sistema jekspertnyh ocenok sostojanija bezopasnosti na morskih akvatorijah // Informacionnye tehnologii. – 2004. - No.11. – pp. 48.
13. Preobrazhenskij A.P. Postroenie modulja rascheta dlja issledovanija sistem mobil'noj svjazi // Modelirovanie, optimizacija i informacionnye tehnologii. – 2015. - No.1. – pp. 6.
14. Nasser N.H. The features of modeling of traffic flows // Modelirovaniye, optimizatsiya i informatsionniye tehnologii. 2016. Is. 4(15). Pp. 16.
15. Malyshev A.N. Vvedenie v vychislitel'nuju linejnuju algebru. - Novosibirsk: Nauka, 1991.
16. Louson Ch., Henson R. Chislennoe reshenie zadach metoda naimen'shih kvadratov. - M.: Nauka, 1986
17. Murashko I.A., Hrabrov D.E. Metodika lokal'nogo pozicionirovanija na osnovanii Wi-Fi-seti universiteta // Vesnіk Grodzenskaga dzjarzhaўnaga ўnіversіtjeta іmja Jankі Kupaly. Seryja 2: Matjematyka. Fіzіka. Іnfarmatyka, Vylіchal'naja tjehnіka і kіravanne. – 2015. - No.2. – pp. 119- 127.
18. Kazakov E.N. Razrabotka i programmnaja realizacii algoritma ocenki urovnja signala v seti Wi-Fi // Modelirovanie, optimizacija i informacionnye tehnologii. – 2016. - No.1. – pp. 13.
19. Shhjokotov M.S., Kashevnik A.M. Sravnitel'nyj analiz sistem pozicionirovanija smartfonov v pomeshhenijah // Trudy SPIIRAN. – 2012. - No.4. – pp. 459-471.
20. Grinyak V.M., Devyatisil'nyj A.S. Dynamic adjustment of multiposition observing system with respect to trajectory measurements // Journal of Computer and Systems Sciences International. - 1999. - Vol. 38. – Is. 1. – Pp. 124-130.
21. Grinjak V.M. Obrabotka navigacionnyh dannyh pri reshenii zadachi vystavki mnogopozicionnoj sistemy nabljudenija // Territorija novyh vozmozhnostej. Vestnik Vladivostokskogo gosudarstvennogo universiteta jekonomiki i servisa. – 2017. – No.2. – pp. 126-139.
Keywords: beacon system, observation, navigation, positioning, observability, conditionality, range
For citation: Grinyak V.M., Grinyak T.M., Ivanenko Y.S. DYNAMIC ADJUSTMENT OF MULTIPOSITION OBSERVING SYSTEM. Modeling, Optimization and Information Technology. 2017;5(3). URL: https://moit.vivt.ru/wp-content/uploads/2017/08/Grinyak_3_2_17.pdf DOI: (In Russ).
Published 30.09.2017