НЕЧЁТКОЕ КОГНИТИВНОЕ МОДЕЛИРОВАНИЕ СИСТЕМЫ УПРАВЛЕНИЯ СПРОСОМ НА ЭКСПРЕСС-КРЕДИТЫ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

FUZZY COGNITIVE MODELING OF DEMAND CONTROL SYSTEM FOR EXPRESS LOANS

Goremykina G.I.,  Schukina N.A. 

UDC 519.7
DOI:

  • Abstract
  • List of references
  • About authors

One of the main ideas to achieve the banks highest efficiency is the introduction of innovative tools considered. Intellectualization of mathematical modeling and, in particular, fuzzy cognitive approach allow to carry out intellectual decision-making process. This process give the chance modeling the person reasoning and consider his cognition. The article proposes a fuzzy cognitive approach to modeling the Express loans demand and its management system. The modeling system is represented as the fuzzy weighted oriented multigraph with transmitted impulse transmitted. The system model is implemented in the form of sequential execution of the following stages: the purpose definition; the fuzzy cognitive map construction; dynamic modeling using the impulse processes; the scenario analysis situation and the choice of the best. The program decision support system "Quill" as computer modeling tool is used. The developed model of the management system serves as the basis for the trends analysis in the development of various situations that arise during the banks work in Express loaning. It allows to predict and model behavior strategies in response to external influences, as well as to determine the management paths that allow to increase the Express loans demand.

1. Vlasov D.A. Osobennosti primeneniya Wolfram-tekhnologij v issledovanii nelinejnyh dinamicheskih ehkonomicheskih sistem// V sbornike: Innovacii: perspektivy, problemy, dostizheniya Materialy SHestoj mezhdunarodnoj nauchno-prakticheskoj konferencii. 2018. Pp. 88-97.

2. Meerson A.Yu., Chernyaev A.P. Nekotorye osobennosti variacionnyh metodov reshenij zadach optimal'nogo upravleniya klassicheskih modelej ekonomicheskoj dinamiki// Nauchnoe obozrenie. Ekonomicheskie nauki. 2016. No. 2. Pp. 146-151.

3. Sinchukov A.V. K voprosu ob ispol'zovanii differencial'nyh modelej v ekonomicheskih issledovaniyah// Sistemnye tekhnologii. 2018. No. 1 (26). Pp. 78-81.

4. Lvovich Y.E., Sapozhnikov G.P. Intellektualizaciya upravleniya resursoehffektivnost'yu nekommercheskoj obrazovatel'noj organizacii s ispol'zovaniem monitoringo-rejtingovoj informacii// Modelirovanie, optimizaciya i informacionnye tekhnologii. 2017. No. 4 (19). P. 21.

5. Goldberg M., Palladini E. Managing Risk and Creating Value with Microfinance. Washington: World Bank Publications, 2010. 136 p.

6. Mastyaeva I.N., Volovatova E.G. Osobennosti upravleniya riskami v roznichnom ehkspress-kreditovanii: sovremennye tendencii// Fundamental'nye issledovaniya. 2017. No. 12-2. Pp. 374-378.

7. Khrustalev E.Yu. Kognitivnaya model' razvitiya bankovskoj sistemy RF// Ekonomika i matematicheskie metody. 2011. T. 47. № 2. Pp. 117-127.

8. Schulz V.L., Kul'ba V.V., Shelkov A.B., Chernov I.V. Scenarnyj analiz v upravlenii regional'noj bezopasnost'yu// Voprosy bezopasnosti. 2016. No. 3. Pp. 41-79.

9. Bruskin S.N., Dovzhenko A.Yu., Nikolaenko V.A., Petrov L.F., Romanov V.P., Tikhomirov N.P., Tikhobaev V.M. Intellektual'nyj analiz dinamiki biznes-sistem; pod nauch. red. N. M. Abdikeeva, L. F. Petrova, N. P. Tikhomirova. M.: «Nauchnaya mysl'». 2010. 320 p.

10. Butenko E.D. Iskusstvennyj intellekt v bankah segodnya: opyt i perspektivy// Finansy i kredit. 2018. Vol. 24. No. 1 (769). Pp. 143-153.

11. Roberts F.S. Diskretnye matematicheskie modeli s prilozheniyami k social'nym, biologicheskim i ehkologicheskim zadacham. M.: Nauka. 1986. 496 p.

12. Chepurnyh N.V., Novoselov A.L. Ekonomika i ehkologiya: razvitie, katastrofy. M.: Izd-vo «Nauka», 1996. 272 p.

13. Banki-lidery v segmente POS-kreditovaniya, po dannym Frank Research Group https://www.frankrg.com/index.php?new_div_id=145#POS

14. Oficial'nyj sajt CB RF http://cbr.ru/press/keypr/

15. Ministerstvo ekonomicheskogo razvitiya Rossijskoj Federacii. Kartina ekonomiki. Fevral' 2018 goda. http://economy.gov.ru/wps/wcm/connect/d2387495-274c-47a7-945f9b852864a708/180213.pdf?MOD=AJPERES&CACHEID

16. Oficial'nyj sajt Federal'noj sluzhby gosudarstvennoj statistiki http://www.gks.ru/bgd/free/b04_03/IssWWW.exe/Stg/d03/133.htm

17. Social'noe polozhenie i uroven' zhizni naseleniya Rossii. 2017: Stat.sb. / Rosstat. M. 2017. 332 p.

18. Akerlof Dzh. Spiritus Animalis, ili kak chelovecheskaya psihologiya upravlyaet ekonomikoj i pochemu ehto vazhno dlya mirovogo kapitalizma. Dzh. Akerlof, R. SHiller; per. s angl. D. Priyatkina; pod nauchn. red. A. Suvorov. M.: «Yunajted Press», 2010. 273 p.

19. Яковлева Е.А. Поведенческая экономика как область научного знания в современной экономической науке// Journal of Economic Regulation. 2014. Т. 5. № 2. С. 62-69.

20. Kartvelishvili V.M., Lebedyuk E.A. Ctimuly i matematicheskaya model' vzaimovliyaniya ehmocij ekonomicheskih sub"ektov// Vestnik Rossijskogo ekonomicheskogo universiteta im. G.V. Plekhanova. 2016. No. 4 (88). Pp. 113-125.

21. Kosko B. Fuzzy Cognitive Maps // International Journal of Man-Machine Studies. 1986. Vol. 24. Pp. 65-75.

22. Maruyama M. The Second Cybernetics: Deviation-Amplifying Mutual Causal Process, Amer. Scientist, 51. 1963. Pp. 164-179.

23. Roberts F.S., and Brown T.A. Signed Digraphs and the Energy Crisis, Amer. Math. Monthly, 82. 1975. Pp.577-594.

24. Chernikova L.I., Evstefeeva S.A. Pokazateli ehffektivnosti raboty bankovskogo sektora v usloviyah krizisa//Finansovaya analitika: problemy i resheniya. 2017. Vol. 10. No. 5 (335). Pp. 506-517.

25. Komarov A.V., Pereverzeva A.A. Bankovskaya sistema sovremennoj rossii: vyzovy i realii// Ekonomika. Biznes. Banki. 2017. No. 1 (18). Pp. 65-75.

26. Pestova A.A., Pankova V.A., Ahmetov R.R., Goloshchapova I.O. Razrabotka sistemy indikatorov finansovoj nestabil'nosti na osnove vysokochastotnyh dannyh// Den'gi i kredit. 2017. No. 6. Pp. 49-58.

Goremykina Galina Ivanovna
Candidate of Physical and Mathematical Sciences
Email: g_iv.05@mail.ru

Plekhanov Russian University of Economics, Russian Federation

Moscow, Russian Federation

Schukina Natalya Alexandrovna
Candidate of Technical Sciences
Email: shchukinan@yandex.ru

Plekhanov Russian University of Economics

Moscow, Russian Federation

Keywords: fuzzy cognitive modeling, express loans, fuzzy weighted oriented graph, сontrol system

For citation: Goremykina G.I., Schukina N.A. FUZZY COGNITIVE MODELING OF DEMAND CONTROL SYSTEM FOR EXPRESS LOANS. Modeling, Optimization and Information Technology. 2018;6(3). URL: https://moit.vivt.ru/wp-content/uploads/2018/07/GoremykinaShchukina_3_18_1.pdf DOI: (In Russ).

760

Full text in PDF

Published 30.09.2018