Currently, there are almost no areas of human activity that are not concerned with
automation, which has received the greatest popularity over the past few years. To date, the
methods that are based on the organization and functioning of biological neural networks have become most famous. The article provides an analytical review of the possibilities of using
artificial neural networks (ANN) in the development of human-machine interfaces based on
various physical principles of interaction with the human body. This interface provides user
interaction with the machines it manages. Examples of the use of human-machine interfaces in
household, medical and military areas are given. Efficiency is due to the flexibility,
nonlinearity, speed and learning of systems based on neural networks. Thus, users can monitor
the process with great precision, achieving the best result. The problems of using ANNs in
control systems of technical objects based on the recognition of natural speech, tracking the
direction of sight, analysis of the electrical activity of the brain and muscle fibers of a person
are considered. The tasks of pre-processing information, classification, analysis of the result
obtained by processing the neural network are described.
1. Loktionov N.P. Obzor sistem raspoznavaniya rechi // Molodezhnyy nauchnyy
forum: Tekhnicheskiye i matematicheskiye nauki: elektr. sb. st. po mat. XLIII
mezhdunar. stud. nauch. -prakt. konf. № 3(43). URL:
https://nauchforum.ru/archive/MNF_tech/3(43).pdf (data obrashcheniya:
19.01.2019)
2. Le N. V. Raspoznavaniye rechi na osnove iskusstvennykh neyronnykh setey
[Tekst] // Tekhnicheskiye nauki v Rossii i za rubezhom: materialy Mezhdunar.
nauch. konf. (g. Moskva. may 2011 g.). — M.: Vash poligraficheskiy partner.
2011. — S. 8-11. — URL https://moluch.ru/conf/tech/archive/3/712/ (data
obrashcheniya: 18.01.2019).
3. Malin. I. K. Krapivenko. A. V. Sistema otslezhivaniya napravleniya vzglyada
s ispolzovaniyem dostupnoy videoapparatury / I. K. Malin. A. V. Krapivenko
// Elektronnyy zhurnal «Trudy MAI». – Vyp. 36. – S. 7–11.
4. Duchowski A. T. Eye Tracking Methodology: Theory and Practice.
Springer, 2007, 22
5. Shepeta Aleksandr Pavlovich. Zharinov Igor Olegovich Perspektivy
primeneniya v aviatsii integrirovannykh nashlemnykh sistem
neyrofiziologicheskogo kontrolya // Informatsionno-upravlyayushchiye
sistemy. 2003. №6. s. 58-62.
6. Glenstrup A. J., Engell-Nielsen T. Eye-controlled media: present and
future state. University of Copenhagen DIKU, June 1995.
7. Sidorova M.A. Serzhantova N.A. Chulkov V.A. Nekotoryye aspekty
primeneniya kompyuternykh tekhnologiy neyrosetevogo prognozirovaniyav
meditsine //XXI vek: itogi proshlogo i problemy nastoyashchego plyus. 2015.
№ 4 (26). S. 94-100.
8. Cherniy V.I. Ostrova T.V. Kachur I.V. Primeneniye metoda neyrosetevogo
modelirovaniya dlya issledovaniya elektricheskoy aktivnosti mozga cheloveka ukladyvayushcheysya v ponyatiye «norma» // Iskusstvenny
intellekt. 2008. №2. S. 76-87.
9. Lavrentyeva S.V. Neyrosetevyye algoritmy obrabotki elektroentsefalogramm
dlya diagnostiki epilepsii. Avtoreferat dissertatsii. Minsk. 2010. 22 s.
10. Zhiganov S.V. Ispolzovaniye kaskada neyronnykh setey dlya analiza EEG
dannykh //Vestnik nauchnogo obshchestva studentov. aspirantov i molodykh
uchenykh. 2015. №1. S. 14-22.
11. Pen O.V. Ispolzovaniye veyvlet-neyrosetey dlya analiza EEG v diagnostike
epilepsii. URL: http://elib.sfu-kras.ru/hancHe/2311/18967
12. Musakulova Zh.A. Razrabotka neyrosetevoy avtomatizirovannoy sistemy
klassifikatsii dannykh EEG//Almanakh sovremennoy nauki i obrazovaniya.
№2. 2014. S. 118-120.
13. Musakulova Zh.A. Neyrosetevoy analiz dannykh elektroentsefalogrammy.
Almanakh sovremennoy nauki i obrazovaniya. Tambov: Gramota. 2017. № 4-
5. S. 68-72
14. Budko R. Yu. Starchenko I.B. Budko A.Yu. Raspoznavaniye litsevoy
elektromiogrammy v sisteme upravleniya vspomogatelnymi ustroystvami.
Perspektivnyye sistemy i zadachi upravleniya. Materialy Dvenadtsatoy
Vserossiyskoy nauchno-prakticheskoy konferentsii i Vosmoy molodezhnoy
shkoly-seminara «Upravleniye i obrabotka informatsii v tekhnicheskikh
sistemakh». Rostov-na-Donu. 2017g. S. 572-574
15. Budko R.Yu. Chernov N.N. Budko A.Yu. Raspoznavaniye myshechnykh
usiliy po signalu litsevoy elektromiogrammy v rezhime realnogo vremeni //
Nauchnyy vestnik NGTU. – 2018. – № 2 (71). – S. 59–74. – doi:
10.17212/1814-1196-2018-2-59-74.
16. Budko R. Yu. Starchenko I.B. Budko A.Yu. Preprocessing Data for Facial
Gestures Classifier on the Basis of the Neural Network Analysis of
Biopotentials Muscle Signals. First International Conference. ICR 2016.
Budapest. Hungary. August 24-26. 2016. Proceedings. Springer International
Publishing. Vol. 9812. Online ISBN 978-3-319-43955-6. pp. 163-171.
17. Budko R.Yu. Starchenko I.B. Sozdaniye klassifikatora mimicheskikh
dvizheniy na osnove analiza elektromiogrammy. Trudy SPIIRAN. 2016.
Vypusk 46. C. 76-89
Budko Natalia Alexandrovna
Email: natalia.tb13@mail.ru
Southern Federal University
Taganrog, Russian Federation
Budko Raisa Yuryevna
Email: raisa-budko@ya.ru
Southern Federal University
Taganrog, Russian Federation
Budko Artyom Yurievich
Email: aptem_budko@mail.ru
Southern Federal University
Taganrog, Russian Federation