Keywords: man-machine interface, artificial neural networks, control, electromyogram, electroencephalogram
APPLICATION OF ANN IN HUMAN-MACHINE INTERFACES
UDC 004.5, 612.817.2
DOI: 10.26102/2310-6018/2019.24.1
Currently, there are almost no areas of human activity that are not concerned with automation, which has received the greatest popularity over the past few years. To date, the methods that are based on the organization and functioning of biological neural networks have become most famous. The article provides an analytical review of the possibilities of using artificial neural networks (ANN) in the development of human-machine interfaces based on various physical principles of interaction with the human body. This interface provides user interaction with the machines it manages. Examples of the use of human-machine interfaces in household, medical and military areas are given. Efficiency is due to the flexibility, nonlinearity, speed and learning of systems based on neural networks. Thus, users can monitor the process with great precision, achieving the best result. The problems of using ANNs in control systems of technical objects based on the recognition of natural speech, tracking the direction of sight, analysis of the electrical activity of the brain and muscle fibers of a person are considered. The tasks of pre-processing information, classification, analysis of the result obtained by processing the neural network are described.
1. Loktionov N.P. Obzor sistem raspoznavaniya rechi // Molodezhnyy nauchnyy forum: Tekhnicheskiye i matematicheskiye nauki: elektr. sb. st. po mat. XLIII mezhdunar. stud. nauch. -prakt. konf. № 3(43). URL: https://nauchforum.ru/archive/MNF_tech/3(43).pdf (data obrashcheniya: 19.01.2019)
2. Le N. V. Raspoznavaniye rechi na osnove iskusstvennykh neyronnykh setey [Tekst] // Tekhnicheskiye nauki v Rossii i za rubezhom: materialy Mezhdunar. nauch. konf. (g. Moskva. may 2011 g.). — M.: Vash poligraficheskiy partner. 2011. — S. 8-11. — URL https://moluch.ru/conf/tech/archive/3/712/ (data obrashcheniya: 18.01.2019).
3. Malin. I. K. Krapivenko. A. V. Sistema otslezhivaniya napravleniya vzglyada s ispolzovaniyem dostupnoy videoapparatury / I. K. Malin. A. V. Krapivenko // Elektronnyy zhurnal «Trudy MAI». – Vyp. 36. – S. 7–11.
4. Duchowski A. T. Eye Tracking Methodology: Theory and Practice. Springer, 2007, 22
5. Shepeta Aleksandr Pavlovich. Zharinov Igor Olegovich Perspektivy primeneniya v aviatsii integrirovannykh nashlemnykh sistem neyrofiziologicheskogo kontrolya // Informatsionno-upravlyayushchiye sistemy. 2003. №6. s. 58-62.
6. Glenstrup A. J., Engell-Nielsen T. Eye-controlled media: present and future state. University of Copenhagen DIKU, June 1995.
7. Sidorova M.A. Serzhantova N.A. Chulkov V.A. Nekotoryye aspekty primeneniya kompyuternykh tekhnologiy neyrosetevogo prognozirovaniyav meditsine //XXI vek: itogi proshlogo i problemy nastoyashchego plyus. 2015. № 4 (26). S. 94-100.
8. Cherniy V.I. Ostrova T.V. Kachur I.V. Primeneniye metoda neyrosetevogo modelirovaniya dlya issledovaniya elektricheskoy aktivnosti mozga cheloveka ukladyvayushcheysya v ponyatiye «norma» // Iskusstvenny intellekt. 2008. №2. S. 76-87.
9. Lavrentyeva S.V. Neyrosetevyye algoritmy obrabotki elektroentsefalogramm dlya diagnostiki epilepsii. Avtoreferat dissertatsii. Minsk. 2010. 22 s.
10. Zhiganov S.V. Ispolzovaniye kaskada neyronnykh setey dlya analiza EEG dannykh //Vestnik nauchnogo obshchestva studentov. aspirantov i molodykh uchenykh. 2015. №1. S. 14-22.
11. Pen O.V. Ispolzovaniye veyvlet-neyrosetey dlya analiza EEG v diagnostike epilepsii. URL: http://elib.sfu-kras.ru/hancHe/2311/18967
12. Musakulova Zh.A. Razrabotka neyrosetevoy avtomatizirovannoy sistemy klassifikatsii dannykh EEG//Almanakh sovremennoy nauki i obrazovaniya. №2. 2014. S. 118-120.
13. Musakulova Zh.A. Neyrosetevoy analiz dannykh elektroentsefalogrammy. Almanakh sovremennoy nauki i obrazovaniya. Tambov: Gramota. 2017. № 4- 5. S. 68-72
14. Budko R. Yu. Starchenko I.B. Budko A.Yu. Raspoznavaniye litsevoy elektromiogrammy v sisteme upravleniya vspomogatelnymi ustroystvami. Perspektivnyye sistemy i zadachi upravleniya. Materialy Dvenadtsatoy Vserossiyskoy nauchno-prakticheskoy konferentsii i Vosmoy molodezhnoy shkoly-seminara «Upravleniye i obrabotka informatsii v tekhnicheskikh sistemakh». Rostov-na-Donu. 2017g. S. 572-574
15. Budko R.Yu. Chernov N.N. Budko A.Yu. Raspoznavaniye myshechnykh usiliy po signalu litsevoy elektromiogrammy v rezhime realnogo vremeni // Nauchnyy vestnik NGTU. – 2018. – № 2 (71). – S. 59–74. – doi: 10.17212/1814-1196-2018-2-59-74.
16. Budko R. Yu. Starchenko I.B. Budko A.Yu. Preprocessing Data for Facial Gestures Classifier on the Basis of the Neural Network Analysis of Biopotentials Muscle Signals. First International Conference. ICR 2016. Budapest. Hungary. August 24-26. 2016. Proceedings. Springer International Publishing. Vol. 9812. Online ISBN 978-3-319-43955-6. pp. 163-171.
17. Budko R.Yu. Starchenko I.B. Sozdaniye klassifikatora mimicheskikh dvizheniy na osnove analiza elektromiogrammy. Trudy SPIIRAN. 2016. Vypusk 46. C. 76-89
Keywords: man-machine interface, artificial neural networks, control, electromyogram, electroencephalogram
For citation: Budko N.A., Budko R.Y., Budko A.Y. APPLICATION OF ANN IN HUMAN-MACHINE INTERFACES. Modeling, Optimization and Information Technology. 2019;7(1). URL: https://moit.vivt.ru/wp-content/uploads/2019/01/BudkoSoavtori_1_19_2.pdf DOI: 10.26102/2310-6018/2019.24.1 (In Russ).
Published 31.03.2019