РЕШЕНИЕ ЗАДАЧИ ОПТИМИЗАЦИИ ЦЕНЫ С ПОМОЩЬЮ ОБРАТНЫХ ВЫЧИСЛЕНИЙ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

SOLVING THE PROBLEM OF PRICE OPTIMIZATION USING INVERSE CALCULATIONS

Gribanova E.B. 

UDC 519.866.2
DOI: 10.26102/2310-6018/2019.26.3.014

  • Abstract
  • List of references
  • About authors

The relevance of the study is due to the high impact of price policy on the efficiency of the enterprise. The article presents a description of the method based on inverse calculations to solve the problem of price optimization. The method involves solving the problem of unconditional optimization and correction of the obtained values of the arguments taking into account the restriction. This minimizes the sum of the squares of the argument increments, taking into account the effect of the arguments on the change of the objective function. The method is more straightforward in computer implementation, in comparison with the classical methods of nonlinear optimization, optimization problem the price is reduced to unconstrained optimization and the solution of the system of equations. The article deals with the problem of formation of prices for products while maximizing profits from the sale of products and limited supply. This assumes a linear dependence of demand on price. A comparison of the obtained result with the solution of the problem in the Mathcad program using standard functions is presented. The materials of the article are of practical value for organizations in the planning of pricing policy, as well as for specialists engaged in the development of models for decisionmaking in the field of Economics. The presented method can be used in decision support systems.

1. Green R., Cornelsen L., Dangour A., Turner R., Shankar B., Mazzocch M., Smith R. The effect of rising food prices on food consumption: systematic review with meta-regression. BMJ, vol. 346, 2013, pp. 1–9.

2. Noparumpa T., Kazaz B., Webste S. Wine futures and advance selling under quality uncertainty. Manufacturing & service operations management, vol. 3, 2015, pp. 411–426.

3. Berry S., Levinsohn J., Pakes A. Automobile prices in market equilibrium steven. Econometrica, vol. 63, 2007, pp. 841–890

4. Johnson K., Hong B., Lee A., Simchi-levi D. Analytics for an online retailer: demand forecasting and price optimization. Manufacturing & Service Operations Management, vol. 18, 2016, pp. 69–85.

5. Kunz T., Crone S., Meissner J. The effect of data preprocessing on a retail price optimization system. Decision Support Systems, vol.84, 2016, pp. 16– 27.

6. Reisi M., Gabriel S.A., Fahimnia B. Supply chain competition on shelf space and pricing for soft drinks: A bilevel optimization approach. International journal of production economics, vol. 211, 2019, pp. 237–250.

7. Theysohn S., Klein K., Volckner F, Spann M. Dual effect-based market segmentation and price optimization. Journal of business research, vol. 66, 2013, pp. 480–488.

8. Krasheninnikova E., Garcia J., Maestre R., Fernandez F. Reinforcement learning for pricing strategy optimization in the insurance industry. Engineering applications of artificial intelligence, vol.80, 2019, pp.8–19.

9. Gupta V.K., Ting Q.U., Tiwari M.K. Multi-period price optimization problem for omnichannel retailers accounting for customer heterogeneity. International journal of production economics, vol. 215, 2019, pp. 155–167.

10. Chen R., Jiang H. Capacitated assortment and price optimization for customers with disjoint consideration sets. Operations Research Letters, vol. 45, 2017, pp. 170–174.

11. Chen R., Jiang H. Capacitated assortment and price optimization under the multilevel nested logit model. Operations Research Letters, vol. 47, 2019, pp. 30–35.

12. Qu T., Zhang J. H., Chan F., Srivastava R.S., Tiwari M.K., Park W. Demand prediction and price optimization for semi-luxury supermarket segment. Computers & industrial engineering, vol. 113, 2017, pp. 91–102.

13. Tsan-Ming C., Cheng M., Bin S., Qi S. Optimal pricing in mass customization supply chains with risk-averse agents and retail competition. Omega, vol. 88, 2019, pp. 150–161.

14. Odincov B.E. Obratnye vychislenija v formirovanii jeko-nomicheskih reshenij. Moscow, Finansy i statistika Publ., 2004. 256 p.

15. Gribanova E.B. Methods for solving inverse problems of economic analysis by minimizing argument increments. Bulletin of TUSUR, 2018, no. 2, pp. 95– 99.

16. Gribanova E.B. Solving the procurement optimization problem by means of inverse computation. Economic analysis: theory and practice, 2018, no. 3, pp. 586–596.

Gribanova Ekaterina Borisovna
Candidate of Technical Sciences
Email: katag@yandex.ru

Tomsk State University of Control Systems and Radioelectronics

Tomsk, Russian Federation

Keywords: price optimization, inverse calculation, quadratic programming, demand forecasting

For citation: Gribanova E.B. SOLVING THE PROBLEM OF PRICE OPTIMIZATION USING INVERSE CALCULATIONS. Modeling, Optimization and Information Technology. 2019;7(3). URL: https://moit.vivt.ru/wp-content/uploads/2019/09/Gribanova_3_19_1.pdf DOI: 10.26102/2310-6018/2019.26.3.014 (In Russ).

636

Full text in PDF

Published 30.09.2019