Имитационная модель радиолокационной обстановки интеллектуальной системы управления распределенными средствами радиолокационных станций
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Simulation model of the radar environment of an intelligent control system for distributed radar facilities

idSergeev M.B., idSentsov A.A., idGrigoryev E.K., idNenashev S.A.

UDC 004.942
DOI: 10.26102/2310-6018/2020.30.3.038

  • Abstract
  • List of references
  • About authors

The beginning of the mass use of small unmanned aerial vehicles for various purposes gave rise to the problem of their safe and controlled movement in space. The article shows the feasibility of using distributed systems in order to improve the accuracy of measurements of the trajectory coordinates of air objects. The list of functions that should be carried out by distributed systems for detecting airborne objects includes controlling the operating modes of each source of location data for scanning an airspace area, obtaining information about moving objects, calculating coordinates and direction of movement (components of velocity vectors) from the processed data, as well as predicting the position of airspace. an object for making a decision on issuing information to associated systems. Variants of layouts of autonomous observation points, as well as their advantages and disadvantages are proposed. The process of modeling a distributed system consisting of two mobile radar stations is described, which is applicable for developing methods of detecting and estimating coordinates of air objects. For the developed simulation model, analytical relationships are obtained for calculating the coordinates of the observed air objects using rangefinder and goniometric information. A structural diagram of the modeling stages for determining the trajectory coordinates of air objects is proposed. The model is built on the basis of goniometric and rangefinder information obtained from the results of field experiments. The developed simulation model is intended to select the parameters of the systems being designed, as well as to work out algorithms for combining radar data from two autonomous radars with a common observation area into a single information field to determine the trajectory coordinates of a mobile UAV-type object, as well as to determine the tactical and technical characteristics at the stage of developing a functional interaction of the distributed mobile assets management system.

1. Mahafza B.R. Radar Systems Analysis and Design Using MATLAB. Chapman and Hall/CRC; 2016;(3):743. Available from: http://dx.doi.org/10.1201/b14904

2. Shishanov S.V., Myakinkov A.V. The system of the circular review for vehicles based on ultra-wideband sensors. Journal of the Russian Universities. Radioelectronics.2015; (2):55- 61. (In Russ.)

3. Gimignani M, Paparo M, Rossi D, Scaccianoce S. RF design and technology supporting Active Safety in automotive applications. 2013 IEEE 10th International Conference on ASIC[Internet]. IEEE. 2013:1-4. Available from: http://dx.doi.org/10.1109/asicon.2013.6811875

4. Verba V. S., Merkulov V. I. (ed.). Estimation of range and speed in radar systems. M.: Radiotechnik. 2010;3. (In Russ.)

5. Ji, Z., Prokhorov, D.: Radar-vision fusion for object classification. In: 2008 11th International Conference on Information Fusion. 2008:1–7.

6. William L. Melvin, James A. Scheer. Principles of Modern Radar vol. II: Advanced Techniques. Scitech publishing. 2013;2.

7. Zaitsev D.V. multi-Position radar systems. Methods and algorithms for processing information under interference conditions. Moscow: Radio Engineering; 2007. (In Russ.)

8. Raol J.R. Multi-Sensor Data Fusion with MATLAB. CRC Press; 2009:534. Available from: http://dx.doi.org/10.1201/9781439800058.

9. Nenashev V. A., Sentsov A. A., Shepeta A. P., "Formation of Radar Image the Earth's Surface in the Front Zone Review Two-Position Systems Airborne Radar," 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), Saint-Petersburg, Russia, 2019, pp. 1-5. http://doi.org/10.1109/weconf.2019.8840641

10. Radar systems for aerospace monitoring of the earth's surface and airspace / Ed. V.S. Willow, B.G., Tatarsky. Monograph. M.: Radiotekhnika, 2014. p. 576. (In Russ.)

11. Nenashev V.A., Shepeta A.P. Precision characteristics of determining the coordinates of objects in a two-position system of small onboard radars. Information and Control Systems .2020;(2):31-36. Available from: http://www.i-us.ru/index.php/ius/article/view/4981. (In Russ.)

12. Nenashev V. A., Shepeta A. P., Grigoriev E. K., Spindzak I. I., Sentsov A. A., Kapranova E. A. The program for calculating the mutual position of the two-position radar and the observed objects in the polar and Cartesian coordinate systems // Certificate of state registration of computer programs № 2018661851 RF, publ. 09/20/2018. ROSPATENT.

13. Nenashev V.A., Sentsov A.A., Shepeta A.P. The Problem of Determination of Coordinates of Unmanned Aerial Vehicles Using a Two-Position System Ground Radar. 2018 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). IEEE; 2018;5. Available from: http://dx.doi.org/10.1109/weconf.2018.8604329.

14. Wang R, Deng Y. Bistatic InSAR. Bistatic SAR System and Signal Processing Technology. Springer Singapore; 2017:235–275. Available from: http://dx.doi.org/10.1007/978-981-10-3078-9_8.

15. Shepeta A.P., Nenashev V. A. Modeling Algorithm for SAR. Proc. of SPIE Remote Sensing, Toulouse, France; 2015:9642; 96420X-1-9642OX-8. https://doi.org/10.1117/12.2194569.

16. Toro G.F., Tsourdos A. UAV sensors for environmental monitoring. Belgrade: MDPI. 2018:661. Available from: http://dx.doi.org/10.3390/books978-3-03842-754-4.

17. Richard Klemm (ed.). Novel Radar Techniques and Applications. Vol 1: Real Aperture Array Radar, Imaging Radar, and Passive and Multistatic Radar. London. Scitech Publishing, 2017;1. Available from: http://dx.doi.org/10.1049/sbra512f_pti.

18. Richard Klemm (ed.). Novel Radar Techniques and Applications. Waveform Diversity and Cognitive Radar, and Target Tracking and Data Fusion. London. Scitech Publishing. 2017;2.

19. Sergeev M.B., et al. Baza dannyh harakteristik bespilotnyh letatel'nyh sistem vertoletnogo tipa [Database of characteristics of unmanned aerial systems of helicopter type]. Sertificate of state registration no. 2020621680, 2020.

20. Nenashev V.A., et al. Baza dannyh harakteristik bespilotnyh letatel'nyh sistem samoletnogo tipa [Database of characteristics of unmanned aerial systems of aircraft type]. Sertificate of state registration no. 2020621745, 2020. 25.09.2020.

21. Sergeev M.B., et al. Baza dannyh harakteristik bespilotnyh letatel'nyh sistem mul'tikopternogo tipa [Database of characteristics of unmanned aerial systems of multicopter type]. Sertificate of state registration no. 2020621745, 2020.

22. Sentsov A. A., Ivanova G. R. Simulation of linear attenuation of radio waves in rain for the design of radar systems. Collection of articles of the international research competition "student of the year 2020". Publisher: international center for scientific partnership "New Science", Petrozavodsk, 2020:99-106. (In Russ.)

Sergeev Mikhail B.
Doctor of Technical Sciences, Professor
Email: mbse@mail.ru

ORCID |

Federal State Autonomous Educational Institution of Higher Education “St. Petersburg State University of Aerospace Instrumentation”

St. Petersburg, Russian Federation

Sentsov Anton A.
Candidate Of Technical Sciences, Associate Professor
Email: toxx@list.ru

ORCID |

Federal State Autonomous Educational Institution of Higher Education “St. Petersburg State University of Aerospace Instrumentation”

St. Petersburg, Russian Federation

Grigoryev Evgeniy K.

Email: ev.grig95@gmail.com

ORCID |

Federal State Autonomous Educational Institution of Higher Education “St. Petersburg State University of Aerospace Instrumentation”

St. Petersburg, Russian Federation

Nenashev Sergey A.

Email: nenashev_sergey178@mail.ru

ORCID |

Federal State Autonomous Educational Institution of Higher Education “St. Petersburg State University of Aerospace Instrumentation”

St. Petersburg, Russian Federation

Keywords: determination of coordinates, air object, two-position system, radar system, complex information processing, simulation model

For citation: Sergeev M.B., Sentsov A.A., Grigoryev E.K., Nenashev S.A. Simulation model of the radar environment of an intelligent control system for distributed radar facilities. Modeling, Optimization and Information Technology. 2020;8(3). URL: https://moit.vivt.ru/wp-content/uploads/2020/08/SergeevSoavtors_3_20_1.pdf DOI: 10.26102/2310-6018/2020.30.3.038 (In Russ).

1125

Full text in PDF

Published 30.09.2020