Keywords: monitoring system, dynamic graph, graph coverage, stars, chains, stability radius, multicriteria optimization, structural dynamics, external influences
Some approaches to assessing the process of functioning of structural-dynamic monitoring systems under external influences
UDC 004.896, 519.1
DOI: 10.26102/2310-6018/2021.35.4.005
Despite the great attention paid in modern works to the problems of organizing structural-dynamic monitoring systems, there are still topical issues related to ensuring their reliable functioning in the event of external influences. In this regard, this article is devoted to solving the problem of assessing the process of functioning of structural-dynamic monitoring systems from the point of view of possible changes in its composition and structure under conditions of external influences that affect the performance of the system's functions with the required characteristics. The proposed approach to solving this problem is based on the theory of graphs and discrete optimization methods, which make it possible to represent the process of the system's functioning as two interconnected particular problems: determining the optimal combination of the monitoring object-monitoring tool and bringing information to the end user. For the first particular problem, a multicriteria problem of covering a bipartite dynamic graph with stars is considered and an algorithm for its solution is proposed, and for the second, the application of algorithms with estimates to construct approximate solutions. As a criterion for assessing the upper bounds of changes in the characteristics of the system, at which it performs the assigned tasks in the required volume, it is proposed to use the concept of the radius of stability. On the basis of the analytical expression of the radius of stability, it is shown how to assess the stability of the optimal, according to the given criteria, variant of the composition and structure of the structural-dynamic monitoring system to changes in its characteristics as a result of external influences. The application of the results obtained in existing technologies for constructing structural-dynamic monitoring systems will increase the reliability and stability of the functioning of such systems.
1. Carminati M., Kanoun O., Ullo S.L., Marcuccio S. Prospects of Distributed Wireless Sensor Networks for Urban Environmental Monitoring. IEEE Aerospace and Electronic Systems Magazine. 2019;34(6):44–52. DOI: 10.1109/MAES.2019.2916294.
2. Zhang S., Wang H., He S., Zhang C., Liu J. An Autonomous Air-Ground Cooperative Field Surveillance System with Quadrotor UAV and Unmanned ATV Robots. IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). 2018:1527–1532. DOI: 10.1109/CYBER.2018.8688331
3. Popescu D., Vlasceanu E., Dima M., Stoican F., Ichim L. Hybrid Sensor Network for Monitoring Environmental Parameters. 28th Mediterranean Conference on Control and Automation (MED). 2020:933-938. DOI: 10.1109/MED48518.2020.9183165. Popescu D., Vlasceanu E., Dima M., Stoican F., Ichim L. Hybrid Sensor Network for Monitoring Environmental Parameters. 28th Mediterranean Conference on Control and Automation (MED). 2020:933-938. DOI: 10.1109/MED48518.2020.9183165.
4. Andreyeva O.N., Kurnasova Ye.V. Nechetkaya kognitivnaya model' dlya identifikatsii i analiza destabiliziruyushchikh faktorov i tekhnogennykh situatsiy. Vestnik mashinostroyeniya = Russ. Engin. Res. 2019;39:399–406. DOI: https://doi.org/10.3103/S1068798X19050034 (In Russ.)
5. Dmitriev O.N., Novikov S.V. Preventing Faults in Machine Tools for Critical Cooperative and Distributed Industrial Productions. Russ. Engin. Res. 2019;39:55–59. DOI: https://doi.org/10.3103/S1068798X19010027
6. Evdokimenkov V.N., Kim R.V., Popov S.S. Risk Management by Trend Analysis of Flight Information. Russ. Engin. Res. 2020;40:160–163. DOI: https://doi.org/10.3103/S1068798X20020136
7. Kochkarov A.A., Rakhmanov A.A., Timoshenko A.V., Putyato S.A. Strukturno-prostranstvennaya model' raspredeleniya sredstv sistemy monitoringa spetsial'nogo naznacheniya po ob"yektam nablyudeniya. Vozdushno-kosmicheskiye sily. Teoriya i praktika = Aerospace forces. Theory and practice. 2020;13:124–132. (In Russ.)
8. Verba V.S., Merkulov V.I., Chernov V.S. Features of the construction of multi-position air-based radio control systems for covert guidance of aircraft. Radio Engineering. 2019;83(5-1):62–71. (In Russ.)
9. Erman A.T., Hoesel L.V., Havinga P., Wu J. Enabling mobility in heterogeneous wireless sensor networks cooperating with UAVs for mission-critical management. IEEE Wireless Communications. 2008;15(6):38–46. DOI: 10.1109/MWC.2008.4749746.
10. Popescu D, Stoican F, Stamatescu G, Chenaru O, Ichim L. A Survey of Collaborative UAV–WSN Systems for Efficient Monitoring. Sensors. 2019;19(21):4690. DOI: https://doi.org/10.3390/s19214690
11. Zhang Y., Chen D., Wang S., Tian L. A promising trend for field information collection: An air-ground multi-sensor monitoring system. Information Processing in Agriculture. 2018;5(2):224–233. DOI: https://doi.org/10.1016/j.inpa.2018.02.002
12. Zhang F., Wang G., Hu Y., Chen L., Zhu AX. Design of an Integrated Remote and Ground Sensing Monitor System for Assessing Farmland Quality. Sensors. 2020;20(2):336. DOI:10.3390/s20020336
13. Kochkarov A.A., Kochkarov R.A., Malinetskii G.G. Issues of dynamic graph theory. Computational Mathematics and Mathematical Physics. 2015;55(9): 1623–1629. DOI: https://doi.org/10.7868/S0044466915090094
14. Harary F., Gupta G. Dynamic Graph Models. Mathl. Comput. Modelling. 1997;25(7):79–87.
15. Korte B., Vygen J. Combimatorial Optimization. Theory and Algorithms. Berlin: Springer-Verlag; 2002.
16. Tebuyeva F.B. Mnogokriterial'naya zadacha pokrytiya grafa zvezdami i yeye prilozheniye. Rostov-na-Donu: Izdatel'stvo YUFU; 2007:128. (In Russ.)
17. Gordeyev E.N., Leont'yev V.K. Obshchiy podkhod k issledovaniyu ustoychivosti resheniy v zadachakh diskretnoy optimizatsii. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki = Journal of Computational Mathematics and Mathematical Physics. 1996;36(1):66–72. (In Russ.)
18. Kuz'min K.G. Yedinyy podkhod k nakhozhdeniyu radiusov ustoychivosti v mnogokriterial'noy zadache o maksimal'nom razreze grafa. Diskretnyy analiz i issledovaniye operatsiy = Discrete analysis and operations research. 2015;22(5):30–51. (In Russ.)
19. Yemelichev V.A., Berdysheva R.A. O radiuse ustoychivosti leksikograficheskogo optimuma vektornoy trayektornoy zadachi. Vestn. Belorus. Universiteta. Seriya 1 = Bulletin of Belarusian University. Series 1. 1998;1:43–46. (In Russ.)
20. Yemelichev V.A., Kuz'min K.G. Otsenki radiusa ustoychivosti vektornoy zadachi o maksimal'nom razreze grafa. Diskret. matematika = Discrete mathematics. 2013;25(2):5–12. (In Russ.)
Keywords: monitoring system, dynamic graph, graph coverage, stars, chains, stability radius, multicriteria optimization, structural dynamics, external influences
For citation: Kazantsev A., Kochkarov R., Timoshenko A., Sychugov A. Some approaches to assessing the process of functioning of structural-dynamic monitoring systems under external influences. Modeling, Optimization and Information Technology. 2021;9(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1047 DOI: 10.26102/2310-6018/2021.35.4.005 (In Russ).
Received 05.09.2021
Revised 04.10.2021
Accepted 03.11.2021
Published 31.12.2021