Параметрическая оптимизация процесса переноса сплошной среды по сетевому носителю
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Parametric optimization of the continuous medium transferring process over a network carrier

Tran D.,  Part A.A. 

UDC 517.929.2
DOI: 10.26102/2310-6018/2021.35.4.037

  • Abstract
  • List of references
  • About authors

The article considers the issue of optimal impact on the continuous medium transferring process over a network carrier, which exerts its influence on the process at the nodal points (branch points) of the network. The mathematical model of this process is defined by the formalisms of the initial-boundary value problem for a differential equation of parabolic type with distributed parameters on a graph (hereinafter referred to as a differential system on a graph). The optimizing function (in the studies of foreign researchers, for example, in the works of J.-L. Lions, the cost function) is specified by a functionality within a limited set of the admissible parameter changes space, which is a range of functions aggregated by a spatial variable. The analysis of the outlined objective is carried out by reducing a differential system to a differential-difference system, using the semi-discretization method with respect to a time variable (an equivalent of the E. Rote method); besides, the differential-difference system inherits the basic properties of the original one: unique solvability and continuity with accordance to the initial data. Thus, the mathematical model of the transfer process under study is determined by a differential-difference system with an error in the time variable proportional to the sampling step. The possibility of reducing the error to the one which would be proportional to the square of the sampling step is also indicated. The latter is dictated by the need to algorithmize as efficiently as possible the search for the optimal set of the impact parameters on the differential system, and therefore, on the studied process of continuous media transfer. The study thoroughly employs the conjugate state and the adjoint system for a differential-difference system, in which terms the relations that ascertain the optimal set of parameters are obtained. An algorithm for finding this set is given. The achieved results underlie the analysis of other optimization problems for the processes of continuous media transfer while revealing interesting parallels with multiphase problems of multidimensional hydrodynamics.

1. Krasnov S., Sergeev S., Zotova E., Grashchenko N. Algorithm of optimal management for the efficient use of energy resources. E3S Web of Conferences. 2018 International Science Conference on Business Technologies for Sustainable Urban Development, SPbWOSCE 2018. 2019;02052 (accessed 18/11/2021).

2. Krasnov S., Sergeev S., Titov A., Zotova Y. Modelling of digital communication surfaces for products and services promotion. IOP Conference Series: Materials Science and Engineering. 2019;012032 (accessed 18/11/2021).

3. Krasnov S., Zotova E., Sergeev S., Krasnov A., Draganov M. Stochastic algorithms in multimodal 3PL segment for the digital environment. IOP Conference Series: Materials Science and Engineering. 8th International Scientific Conference «TechSys 2019» – Engineering, Technologies and Systems. 2019;012069 (accessed 18/11/2021).

4. Part A.A. Zadacha optimizatsii giperbolicheskoi sistemy v prostranstve . Sbornik trudov X Mezhdunarodnoi konferentsii «Sovremennye metody prikladnoi matematiki, teorii upravleniya i komp'yuternykh tekhnologiI». 2017;283–286. (In Russ.)

5. Aleksandrov A., Aleksandrova E., Zhabko A. Asymptotic stability conditions of solutions for nonlinear multiconnected time-delay systems. Circuits Systems and Signal Processing. 2016;35(10):3531–3554 (accessed 18/11/2021).

6. Alexandrova I.V., Zhabko A.P. A new LKF approach to stability analysis of linear systems with uncertain delays. Automatica. 2018;91:173–178 (accessed 18/11/2021).

7. Tran D., Provotorov V.V. Finite difference method for transfer equation with distributed parameters on the network. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologi = Modeling, Optimization and Information Technology. 2021;9(3). Available from: https://moitvivt.ru/ru/journal/pdf?id=1019. DOI: 10.26102/2310-6018/2021.34.3.012 (In Russ) DOI: 10.26102/2310-6018/2021.34.3.012 (accessed 18/11/2021). (In Russ.)

8. Lions ZH.-L. Nekotorye metody resheniya nelineinykh kraevykh zadach. Moskva, Mir; 1972. 587 p. (In Russ.)

9. Marchuk G.I. Metody vychislitel'noi matematiki. M.: Nauka, 1977. 456 p. (In Russ.)

10. Karelin V.V. Shtrafnye funktsii v zadache upravleniya protsessom nablyudeniya. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya = Vestnik of Saint Petersburg University. Applied mathematics. Computer science. Control processes. 2010;10(4):109–114. (In Russ.)

11. Karelin V.V., Bure V.M., Svirkin M.V. Obobshchennaya model' rasprostraneniya informatsii v nepreryvnom vremeni. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya = Vestnik of Saint Petersburg University. Applied mathematics. Computer science. Control processes. 2017;13(1):74–80. Available from: https://doi:10.21638/11701/spbu 10.2017.107 (accessed 18/11/2021). (In Russ.)

12. Kamachkin A.M., Potapov D.K., Yevstafyeva V.V. Existence of periodic modes in automatic control system with a three-position relay. Intern. Journal Control. 2020;93(4):763–770.

13. Borisoglebskaya L.N., Provotorov V.V., Sergeev S.M., Kosinov E.S. Mathematical aspects of optimal control of transference processes in spatial networks. IOP Conference Series: Materials Science and Engineering. International Workshop «Advanced Technologies in Material Science, Mechanical and Automation Engineering – MIP: Engineering – 2019». 2019;42025 (accessed 18/11/2021).

14. Veremei E.I., Sotnikova M.V. Stabilizatsiya plazmy na baze prognoza s ustoichivym lineinym priblizheniem. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya = Vestnik of Saint Petersburg University. Applied mathematics. Computer science. Control processes. 2011;10(1):116–133. (In Russ)

15. Kamachkin A.M., Potapov D.K., Yevstafyeva V.V. On uniqueness and properties of periodic solution of second-order nonautonomous system with discontinuous nonlinearity. Journal of Dynamical and Control Systems. 2017;23(4):825–837(accessed 18/11/2021).

16. Borisoglebskaya L.N., Provotorova E. N., Sergeev S. M. Promotion based on digital interaction algorithm. International Scientific Workshop «Advanced Technologies in Material Science, Mechanical and Automation Engineering», MIP: Engineering-2019. 2019. IOP Conf. Ser.: Mater. Sci. Eng. 537 042032(accessed 18/11/2021).

17. Sergeev S.M., Sidnenko T.I., Sidnenko D.B. Distribution centers for agriculture, their modeling. International Scientific School «Paradigma» Summer-2016 Selected Papers. Yelm, WA, USA. 2016;92–97 (accessed 18/11/2021).

18. Iliashenko O., Sergeev S., Krasnov S. Calculation of high-rise construction limitations for non-resident housing fund in megacities. E3S Web of Conferences. 2018;03006 (accessed 18/11/2021).

Tran Duy

Email: tranduysp94@gmail.com

Voronezh State University

Voronezh, Russian Federation

Part Anna Aleksandrovna
Candidate in Physics and Mathematics
Email: anna_razinkova@mail.ru

N.E. Zhukovsky and Y.A. Gagarin Air Force Academy

Voronezh, Russian Federation

Keywords: directed graph, differential-difference system, adjoint system, parametric optimization, continuous medium transfer

For citation: Tran D., Part A.A. Parametric optimization of the continuous medium transferring process over a network carrier. Modeling, Optimization and Information Technology. 2021;9(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1090 DOI: 10.26102/2310-6018/2021.35.4.037 (In Russ).

506

Full text in PDF

Received 21.11.2021

Revised 17.12.2021

Accepted 23.12.2021

Published 31.12.2021