Keywords: heat distribution, solution stabilization, time behavior, time asymptotics, heat equation, time estimate, asymptotics at infinity
Determination of the stabilization rate of the solution to one initial problem for the heat equation
UDC 517.929.2
DOI: 10.26102/2310-6018/2022.39.4.014
Differential equations are intensively used as models for a wide range of natural science problems. For most differential equations, it is not possible to obtain solutions in quadratures expressed in terms of elementary or special functions, and if it is possible, then the representations of these solutions are often very cumbersome, which makes their practical application difficult. Therefore, the question of finding simple formulas that describe with a sufficient degree of accuracy the qualitative behavior of solutions to differential equations on a certain interval of variation of the independent variable is very acute. Asymptotic methods are employed to determine the qualitative behavior of solutions to differential equations on a certain interval of change of the independent variable. Asymptotic methods are more preferable than numerical methods when one needs to know the behavior of the solution to a differential equation considered on an unbounded interval. This is explained by the fact that the discrepancy of the solution to a differential equation (the modulus of the difference between the true solution and the numerical solution) is usually estimated from above through a value proportional to the length of the interval on which the numerical method is applied. The paper considers the one-dimensional Cauchy problem for an inhomogeneous heat equation with a homogeneous initial condition. Using an explicit representation of the solution to the Cauchy problem, an exact uniform estimate and an exact pointwise estimate of the stabilization rate of the solution to the Cauchy problem to zero for a long time were constructed.
1. Zelenjak T.I. Ob asimptotiki reshenij odnoj smeshannoj zadachi. Dif. uravnenija. 1966;2(1):47–64. (In Russ.).
2. Glushko A.V. Asimptoticheskie metody v zadachah gidrodinamiki. Voronezh, Voronezhskij gosudarstvennyj universitet. 2003;300 p. (In Russ.).
3. Glushko A.V., Rjabenko A.S. O malyh odnomernyh akusticheskih kolebanijah stratificirovannoj zhidkosti v poluprostranstve. Vestnik Voronezhskogo gosudarstvennogo universitet. Serija: Fizika. Matematika = Proceedings of Voronezh State University. Series: Physics. Mathematics. 2008;1:226–231. (In Russ.).
4. Glushko A.V., Rjabenko A.S. Princip lokalizacii i ocenka skorosti zatuhanija kolebanij vjazkoj szhimaemoj stratificirovannoj zhidkosti. Matematicheskie zametki. 2009;85(4):585–592. (In Russ.).
5. Denisov V.N. O povedenii reshenij parabolicheskih uravnenij pri bol'shih znachenijah vremeni. UMN. 2005;60(4):145–212. (In Russ.).
6. Rjabenko A.S. Ocenka pri reshenija zadachi o raspredelenii tepla v poluprostranstve s peremennym kojefficientom teploprovodnosti. Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Fizika. Matematika = Proceedings of Voronezh State University. Series: Physics. Mathematics. 2007;1:95–99. (In Russ.).
7. Rjabenko A.S., Karpova Ju.Ju. Izuchenie vtoroj nachal'no-kraevoj zadachi dlja uravnenija teploprovodnosti s peremennym kojefficientom teploprovodnosti. Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Fizika. Matematika = Proceedings of Voronezh State University. Series: Physics. Mathematics. 2011;1:168–174. (In Russ.).
8. Pershin I.V. Asimptotika reshenija uravnenija teploprovodnosti s osobennost'ju na granice. Tr. IMM. Uro RAN. 2012;18(1):268–272. (In Russ.).
9. Gorshkov A.V. Stabilizacija reshenija uravnenija teploprovodnosti vo vneshnej sfere s upravleniem na granice. Vestnik Moskovskogo universiteta. Ser 1. Matematika. Mehanika. 2016;5:3–14. (In Russ.).
10. Tihonov A.N. Ob uravnenii teploprovodnosti dlja neskol'kih peremennyh. Bjull. MGU, mat. meh. 1938;1(9):1–40. (In Russ.).
11. Mihajlov V.P. O stabilizacii reshenija zadachi Koshi dlja uravnenija teploprovodnosti. Dokl. AN SSSR. 1970;90(1):38–41. (In Russ.).
12. Jejdel'man S.D., Porper F.O. O stabilizacii parabolicheskih uravnenij. Izv. vuzov. Matem. 1960;4:210–217. (In Russ.).
13. Denisov V.N., Repnikov V.D. O stabilizacii reshenija zadachi Koshi dlja parabolicheskih uravnenij. Differencial'nye uravnenija = Differential equations. 1984;20(1):20–41. (In Russ.).
14. Denisov V.N. O neobhodimyh i dostatochnyh uslovijah stabilizacii reshenija zadachi Koshi dlja parabolicheskih uravnenij s mladshimi kojefficientami. DAN. RAN. 2010;433(4):452–454. (In Russ.).
15. Vladimirov V.S. Uravnenija matematicheskoj fiziki. Moskva: FIZMATLIT; 1976. 519 p. (In Russ.).
Keywords: heat distribution, solution stabilization, time behavior, time asymptotics, heat equation, time estimate, asymptotics at infinity
For citation: Ryabenko A.S., Tran D. Determination of the stabilization rate of the solution to one initial problem for the heat equation. Modeling, Optimization and Information Technology. 2022;10(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1268 DOI: 10.26102/2310-6018/2022.39.4.014 (In Russ).
Received 09.11.2022
Revised 06.12.2022
Accepted 19.12.2022
Published 31.12.2022