Keywords: model of diversification, department, investments, mathematical modeling
PROBLEM OF OPTIMAL DIVERSIFICATION IN VARIOUS INDUSTRIES
UDC 33(043)
DOI:
In the article reviews various models of diversification in related and unrelated industries at different organizational forms, the essence of which is to invest and the pooling of organizations’ resources. The article provides methods of setting and solving optimal diversification for convex, discrete and non-convex cases.
1. Barkalov S.A. Analysis of the diversification model / S.A. Barkalov, F.I. Ereshko, N.A. Kanaeva. // Control systems and information technology: scientific and technical journal. No. 1.1 (55) 2014. Moscow-Voronezh. Publishing House "Scientific Book", 2014. S. 112- 117.
2. Barkalov S.A. Applied Models in Organizational Management systems / S.A. Barkalov, V.N. Burkov, V.V. Sokolovsky, N.A. Shulzhenko. Tula, 2002.
3. Burkov V.N. The dichotomous programming method in tasks discrete optimization. / V.N. Burkov, I.V. Burkova. - M.: 2003 (Scientific publication / CEMI RAS), 43 p.
4. Ereshko F. I. Schemes of diversification in controlled systems / F.I. Ereshko, N.A. Kanaev. // Dynamics of heterogeneous systems. Proceedings of the Institute for System Analysis of the Russian Academy of Sciences. - M .: LENAND, 2010.V.53 (4). S. 32-45.
5. Ereshko F.I. Making decisions on system diversification. / F.I. Ereshko. // Proceedings of the Institute for System Analysis RAS “Dynamics heterogeneous systems. ” - M .: LENAND, 2010.V. 53 (4), S. 107-114.
Keywords: model of diversification, department, investments, mathematical modeling
For citation: Barkalov S.A., Burkova I.V., Kanaeva N.A. PROBLEM OF OPTIMAL DIVERSIFICATION IN VARIOUS INDUSTRIES. Modeling, Optimization and Information Technology. 2014;2(4). URL: https://moit.vivt.ru/wp-content/uploads/2014/12/BarkalovBurkovKanaeva_4_14_1.pdf DOI: (In Russ).
Published 31.12.2014