Интеллектуализация процессов принятия решений в системах управления рисками на базе нейронных сетей семейства ART
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Intelligentization of decision-making processes in risk management systems based on neural networks of the art family

Antipov S.S.,  Burkovsky V.L.,  Potsebneva I.V. 

UDC 004.032.26
DOI: 10.26102/2310-6018/2024.45.2.020

  • Abstract
  • List of references
  • About authors

This article discusses the problems of using neural networks of the ART family to optimize the decision-making process in risk management systems. The advantages of this approach, such as the ability to quickly respond to new information and flexibility in learning, are weighed against disadvantages, including the difficulty of adjusting parameters and interpreting results. The next part of the article will explore various ways to train ART networks, including unsupervised learning and supervised learning methods, as well as key points for configuring network parameters. Possible problems related to the quality of input data and the difficulty of interpreting output data are raised. The article also presents a concrete example of the use of ART-type neural networks in the construction industry to assess risks and make informed decisions. In conclusion, the article focuses on the prospects for using neural networks of the ART family for cluster analysis of risks, identifying related factors and grouping them for more effective management. The possibilities for further development of decision-making methods in risk management using neural networks such as ART and their potential to provide more accurate and predictive practices are discussed.

1. Carpenter G.A., Grossberg S., Markuzon N., Reynolds J.H., Rosen D.B. Fuzzy ARTMAP: an adaptive resonance architecture for incremental learning of analog maps. In: Proceedings of 1992 International Joint Conference on Neural Networks (IJCNN’92): Volume 3, 07 11 June 1992, Baltimore, MD, USA. IEEE; 1992. P. 309–314. https://doi.org/10.1109/IJCNN.1992.227156

2. Carpenter G.A., Grossberg S. Adaptive Resonance Theory (ART). In: The Handbook of Brain Theory and Neural Networks. Cambridge: MIT Press; 2003. P. 87–90.

3. Versace M., Kozma R.T., Wunsch D.C. Adaptive Resonance Theory Design in Mixed Memristive-Fuzzy Hardware. In: Advances in Neuromorphic Memristor Science and Applications. Dordrecht: Springer; 2012. P. 133–153. https://doi.org/10.1007/978-94-007-4491-2_9

4. Afonin P.N. Sistema upravleniya riskami. Saint Petersburg: Troitskii most; 2016. 125 p. (In Russ.).

5. Lekun Ya. Kak uchitsya mashina: Revolyutsiya v oblasti neironnykh setei i glubokogo obucheniya. Moscow: Intellektual'naya Literatura; 2020. 348 p. (In Russ.).

6. Kashirina I.L., Fedutinov K.A. Clusterization of continuous data flow based on generalized model of ART neural network. Sistemy upravleniya i informatsionnye tekhnologii. 2018;(1):33–39. (In Russ.).

7. Kashirina I.L., Lvovich Ya.E., Sorokin S.O. Neural network modeling of the formation of cluster structures on the basis of the networks ART. Informatsionnye tekhnologii = Information Technologies. 2017;23(3):228–232. (In Russ.).

8. Kashirina I.L., Fedutinov K.A. Application of FUZZY ARTMAP network in intelligent systems of invasion detection. Modelirovanie, optimizatsiya i informatsionnye tekhnologii = Modeling, Optimization and Information Technology. 2018;6(3). (In Russ.). URL: https://moit.vivt.ru/wp-content/uploads/2018/07/KashirinaFedutinov_3_18_1.pdf

9. Kashirina I.L., L'vovich Ya.E., Sorokin S.O. Integral'noe otsenivanie effektivnosti setevykh sistem s klasternoi strukturoi. Ekonomika i menedzhment sistem upravleniya. 2015;(1-3):330–337. (In Russ.).

10. Kashirina I.L., Lvovich Ya.E., Sorokin S.O. Models and numerical methods optimization of formation effective network system cluster structure. Informatsionnye tekhnologii = Information Technologies. 2015;21(9):657–662. (In Russ.).

Antipov Sergey Sergeevich

Voronezh State Technical University

Voronezh, Russian Federation

Burkovsky Viktor Leonidovich
Doctor of Technical Sciences, Professor

Voronezh State Technical University

Voronezh, Russian Federation

Potsebneva Irina Valerievna
Candidate of Technical Sciences, Assistant professor

Voronezh State Technical University

Voronezh, Russian Federation

Keywords: ART-type neural networks, risks, decision-making processes, monitoring data, neural network training

For citation: Antipov S.S., Burkovsky V.L., Potsebneva I.V. Intelligentization of decision-making processes in risk management systems based on neural networks of the art family. Modeling, Optimization and Information Technology. 2024;12(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1604 DOI: 10.26102/2310-6018/2024.45.2.020 (In Russ).

148

Full text in PDF

Received 12.06.2024

Revised 21.06.2024

Accepted 27.06.2024

Published 30.06.2024