Нейронная сеть для оптимизации адаптивного экспоненциального алгоритма декодирования минимальной суммы
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Neural network to optimize the adaptive exponential min sum decoding algorithm

idZhang W., idMouhamad I., idSaklakov V.M., idJayakody D.K.

UDC 007.3
DOI: 10.26102/2310-6018/2025.48.1.026

  • Abstract
  • List of references
  • About authors

Currently, deep learning, as a hot research direction, has yielded fruitful research results in natural language processing and graph recognition and generation, such as ChatGPT and Sora. Combining deep learning with decoding algorithms for channel coding has also gradually become a research hotspot in the field of communication. In this paper, we use deep learning to improve the adaptive exponential min sum (AEMS) algorithm for LDPC codes. Initially, we extend the iterative decoding procedure between check nodes (CNs) and variable nodes (VNs) in the AEMS decoding algorithm into a feedforward propagation network based on the Tanner graph derived from the H matrix of LDPC codes. Second, in order to improve the model training efficiency and reduce the computational complexity, we assign the same weight factor to all the edge information in each iteration of the AEMS decoding network, which reduces the computational complexity while guaranteeing the decoding performance, and we call it the shared neural AEMS (SNAEMS) decoding network. The simulation results show that the decoding performance of the proposed SNAEMS decoding network outperforms that of the conventional AEMS decoder, and its coding gain is gradually enhanced as the code length increases.

1. Mathew A., Amudha P., Sivakumari S. Deep Learning Techniques: An Overview. In: Advanced Machine Learning Technologies and Applications: Proceedings of AMLTA 2020, 13–15 February 2020, Jaipur, India. Singapore Springer; 2021. pp. 599–608. https://doi.org/10.1007/978-981-15-3383-9_54

2. Li L., Mu X., Li S., Peng H. A Review of Face Recognition Technology. IEEE Access. 2020;8:139110–139120. https://doi.org/10.1109/ACCESS.2020.3011028

3. Gallager R. Low-density parity-check codes. IRE Transactions on Information Theory. 1962;8(1):21–28. https://doi.org/10.1109/TIT.1962.1057683

4. Wang Qi., Wang S., Fang H., Chen L., Chen L., Guo Yu. A Model-Driven Deep Learning Method for Normalized Min-Sum LDPC Decoding. In: 2020 IEEE International Conference on Communications Workshops (ICC Workshops), 07–11 June 2020, Dublin, Ireland. IEEE; 2020. pp. 1–6. https://doi.org/10.1109/ICCWorkshops49005.2020.9145237

5. Nachmani E., Marciano E., Lugosch L., Gross W.J., Burshtein D., Be’ery Ya. Deep Learning Methods for Improved Decoding of Linear Codes. IEEE Journal of Selected Topics in Signal Processing. 2018;12(1):119–131. https://doi.org/10.1109/JSTSP.2017.2788405

6. Lugosch L., Gross W.J. Neural offset min-sum decoding. In: 2017 IEEE International Symposium on Information Theory (ISIT), 25–30 June 2017, Aachen, Germany. IEEE; 2017. pp. 1361–1365. https://doi.org/10.1109/ISIT.2017.8006751

7. Fossorier M.P.C., Mihaljevic M., Imai H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Transactions on Communications. 1999;47(5):673–680. https://doi.org/10.1109/26.768759

8. Zhang W., Mouhamad I., Saklakov V.M. Development of adaptive exponential min sum decoding algorithm. Modeling, Optimization and Information Technology. 2024;12(4). https://doi.org/10.26102/2310-6018/2024.47.4.019

9. Tanner R. A recursive approach to low complexity codes. IEEE Transactions on Information Theory. 1981;27(5):533–547. https://doi.org/10.1109/TIT.1981.1056404

10. Lyu W., Zhang Z., Jiao Ch., Qin K., Zhang H. Performance Evaluation of Channel Decoding with Deep Neural Networks. In: 2018 IEEE International Conference on Communications (ICC), 20–24 May 2018, Kansas City, USA. IEEE; 2018. pp. 1–6. https://doi.org/10.1109/ICC.2018.8422289

11. Goodfellow Ia., Bengio Yo., Courville A. Deep Learning. Cambridge: MIT Press; 2016. 800 p.

12. Nachmani E., Be’ery Ya., Burshtein D. Learning to decode linear codes using deep learning. In: 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 27–30 September 2016, Monticello, USA. IEEE; 2017. pp. 341–346. https://doi.org/10.1109/ALLERTON.2016.7852251

13. Wu X., Jiang M., Zhao Ch. Decoding Optimization for 5G LDPC Codes by Machine Learning. IEEE Access. 2018;6:50179–50186. https://doi.org/10.1109/ACCESS.2018.2869374

14. CCSDS Historical Document "Short Block Length LDPC Codes for TC Synchronization and Channel Coding" CCSDS 231.1-O-1 (2015). URL: https://public.ccsds.org/Pubs/231x1o1s.pdf [Accessed 12th December 2024].

Zhang Weijia

Email: victoryzh@tpu.ru

ORCID |

National Research Tomsk Polytechnic University

Tomsk, Russian Federation

Mouhamad Ibrahem

ORCID |

National Research Tomsk Polytechnic University

Tomsk, Russian Federation

Saklakov Vasiliy Mikhailovich

ORCID |

National Research Tomsk Polytechnic University

Tomsk, Russian Federation

Jayakody Dushantha Nalin Kumara
Ph.D

ORCID |

National Research Tomsk Polytechnic University

Tomsk, Russian Federation

Keywords: LDPC, deep learning, neural network, exponential algorithm, min sum

For citation: Zhang W., Mouhamad I., Saklakov V.M., Jayakody D.K. Neural network to optimize the adaptive exponential min sum decoding algorithm. Modeling, Optimization and Information Technology. 2025;13(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1807 DOI: 10.26102/2310-6018/2025.48.1.026 .

78

Full text in PDF

Received 24.01.2025

Revised 18.02.2025

Accepted 27.02.2025