Обзор и анализ технологий систем технического зрения, основанных на оптических датчиках для автоматического движения по грунтовым дорогам
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Review and analysis of optical sensor-based technical vision systems technologies for autonomous navigation on dirt roads

idBychkov A., idBulanov A.

UDC 004.421.2.
DOI: 10.26102/2310-6018/2025.49.2.045

  • Abstract
  • List of references
  • About authors

This review is devoted to computer vision technologies for the autonomous navigation of a mobile robot on dirt roads, and to analyzing their degree of technological readiness. The selection of studies was conducted according to the PRISMA methodology using the academic article aggregator Google Scholar. Based on the analysis of the works from the selected sample, key technologies were identified, including datasets, terrain mapping techniques, and methods for road and obstacle detection. These were further divided into sub-technologies, each of which was evaluated for its level of technological readiness using the scale presented in the study – a newly proposed interpretation of the TRL scale – taking into account the particular challenges of working on dirt roads and in environments that are generally difficult to replicate under laboratory conditions. As a result of the study, statistics were compiled that highlight the most significant works in the field of autonomous navigation on dirt roads. It was also concluded that the main trend in navigation development involves the acquisition and processing of comprehensive data, that traversability analysis focuses on the extraction and processing of geometric features, and that there is an urgent need for high-quality datasets.

1. Zhang Yu., Carballo A., Yang H., Takeda K. Perception and Sensing for Autonomous Vehicles Under Adverse Weather Conditions: A Survey. ISPRS Journal of Photogrammetry and Remote Sensing. 2023;196:146–177. https://doi.org/10.1016/j.isprsjprs.2022.12.021

2. Feng D., Haase-Schütz Ch., Rosenbaum L., et al. Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges. IEEE Transactions on Intelligent Transportation Systems. 2021;22(3):1341–1360. https://doi.org/10.1109/TITS.2020.2972974

3. Biswas A., Reon M.A.O., Das P., et al. State-of-the-Art Review on Recent Advancements on Lateral Control of Autonomous Vehicles. IEEE Access. 2022;10:114759–114786. https://doi.org/10.1109/ACCESS.2022.3217213

4. Haque T.S., Rahman Md.A., Islam Md.R., et al. A Review on Driving Control Issues for Smart Electric Vehicles. IEEE Access. 2021;9:135440–135472. https://doi.org/10.1109/ACCESS.2021.3116353

5. Zablocki É., Ben-Younes H., Pérez P., Cord M. Explainability of Deep Vision-Based Autonomous Driving Systems: Review and Challenges. International Journal of Computer Vision. 2022;130(10):2425–2452. https://doi.org/10.1007/s11263-022-01657-x

6. Chen L., Li Yu., Huang Ch., et al. Milestones in Autonomous Driving and Intelligent Vehicles: Survey of Surveys. IEEE Transactions on Intelligent Vehicles. 2023;8(2):1046–1056. https://doi.org/10.1109/TIV.2022.3223131

7. Guastella D.C., Muscato G. Learning-Based Methods of Perception and Navigation for Ground Vehicles in Unstructured Environments: A Review. Sensors. 2020;21(1). https://doi.org/10.3390/s21010073

8. King Ch., Ries L., Langner J., Sax E. A Taxonomy and Survey on Validation Approaches for Automated Driving Systems. In: 2020 IEEE International Symposium on Systems Engineering (ISSE), 12 October – 12 November 2020, Vienna, Austria. IEEE; 2020. P. 1–8. https://doi.org/10.1109/ISSE49799.2020.9272219

9. Mihalj T., Li H., Babić D. Road Infrastructure Challenges Faced by Automated Driving: A Review. Applied Sciences. 2022;12(7). https://doi.org/10.3390/app12073477

10. Gholambosseinian A., Seitz J. Vehicle Classification in Intelligent Transport Systems: An Overview, Methods and Software Perspective. IEEE Open Journal of Intelligent Transportation Systems. 2021;2:173–194. https://doi.org/10.1109/OJITS.2021.3096756

11. Divakarla K.P., Emadi A., Razavi S., Habibi S., Yan F. A Review of Autonomous Vehicle Technology Landscape. International Journal of Electric and Hybrid Vehicles. 2019;11(4):320–345. https://doi.org/10.1504/IJEHV.2019.102877

12. Lopac N., Jurdana I., Brnelić A., Krljan T. Application of Laser Systems for Detection and Ranging in the Modern Road Transportation and Maritime Sector. Sensors. 2022;22(16). https://doi.org/10.3390/s22165946

13. Liu L., Lu S., Zhong R., et al. Computing Systems for Autonomous Driving: State of the Art and Challenges. IEEE Internet of Things Journal. 2021;8(8):6469–6486. https://doi.org/10.1109/JIOT.2020.3043716

14. Brunke L., Greeff M., Hall A.W., et al. Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning. Annual Review of Control, Robotics, and Autonomous Systems. 2022;5:411–444. https://doi.org/10.1146/annurev-control-042920-020211

15. Mankins J.C. Technology Readiness Level – A White Paper. ResearchGate. URL: https://www.researchgate.net/publication/247705707_Technology_Readiness_Level_-_A_White_Paper [Accessed 3rd April 2025].

16. Page M.J., McKenzie J.E., Bossuyt P.M., et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ. 2021;372. https://doi.org/10.1136/bmj.n71

17. Hu J.-W., Zheng B.-Yi., Wang C. A Survey on Multi-Sensor Fusion Based Obstacle Detection for Intelligent Ground Vehicles in Off-Road Environments. Frontiers of Information Technology & Electronic Engineering. 2020;21(5):675–692. https://doi.org/10.1631/FITEE.1900518

18. Geiger A., Lenz Ph., Urtasun R. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, 16–21 June 2012, Providence, RI, USA. IEEE; 2012. P. 3354–3361. https://doi.org/10.1109/CVPR.2012.6248074

19. Fayyad J., Jaradat M.A., Gruyer D., Najjaran H. Deep Learning Sensor Fusion for Autonomous Vehicle Perception and Localization: A Review. Sensors. 2020;20(15). https://doi.org/10.3390/s20154220

20. He K., Gkioxari G., Dollár P., Girshick R. Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), 22–29 October 2017, Venice, Italy. IEEE; 2017. P. 2980–2988. https://doi.org/10.1109/ICCV.2017.322

21. Yeong D.J., Velasco-Hernandez G., Barry J., Walsh J. Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review. Sensors. 2021;21(6). https://doi.org/10.3390/s21062140

22. Geiger A., Lenz P., Stiller Ch., Urtasun R. Vision Meets Robotics: The KITTI Dataset. The International Journal of Robotics Research. 2013;32(11):1231–1237. https://doi.org/10.1177/0278364913491297

23. He K., Zhang X., Ren Sh., Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June 2016, Las Vegas, NV, USA. IEEE; 2016. P. 770–778. https://doi.org/10.1109/CVPR.2016.90

24. Breiman L. Random Forests. Machine Learning. 2001;45:5–32. https://doi.org/10.1023/A:1010933404324

25. Hochreiter S., Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997;9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

26. LeCun Ya., Bengio Yo., Hinton G. Deep Learning. Nature. 2015;521:436–444. https://doi.org/10.1038/nature14539

27. Ronneberger O., Fischer Ph., Brox Th. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference: Proceedings: Part III, 05–09 October 2015, Munich, Germany. Cham: Springer; 2015. P. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

28. Shannon C.E. A Mathematical Theory of Communication. The Bell System Technical Journal. 1948;27(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

29. Bai Yu., Zhang B., Xu N., Zhou J., Shi J., Diao Zh. Vision-Based Navigation and Guidance for Agricultural Autonomous Vehicles and Robots: A Review. Computers and Electronics in Agriculture. 2023;205. https://doi.org/10.1016/j.compag.2022.107584

30. Shi J., Bai Yu., Diao Zh., Zhou J., Yao X., Zhang B. Row Detection BASED Navigation and Guidance for Agricultural Robots and Autonomous Vehicles in Row-Crop Fields: Methods and Applications. Agronomy. 2023;13(7). https://doi.org/10.3390/agronomy13071780

31. Bavle H., Sanchez-Lopez J.L., Cimarelli C., Tourani A., Voos H. From SLAM to Situational Awareness: Challenges and Survey. Sensors. 2023;23(10). https://doi.org/10.3390/s23104849

32. Zheng Sh., Wang J., Rizos Ch., Ding W., El-Mowafy A. Simultaneous Localization and Mapping (SLAM) for Autonomous Driving: Concept and Analysis. Remote Sensing. 2023;15(4). https://doi.org/10.3390/rs15041156

33. Carruth D.W., Walden C.T., Goodin Ch., Fuller S.C. Challenges in Low Infrastructure and Off-Road Automated Driving. In: 2022 Fifth International Conference on Connected and Autonomous Driving (MetroCAD), 28–29 April 2022, Detroit, MI, USA. IEEE; 2022. P. 13–20. https://doi.org/10.1109/MetroCAD56305.2022.00008

34. Shu Yo., Dong L., Liu J., Liu Ch., Wei W. Overview of Terrain Traversability Evaluation for Autonomous Robots. Journal of Field Robotics. 2024. https://doi.org/10.1002/rob.22461

35. Marin-Plaza P., Yagüe D., Royo F., et al. Project ARES: Driverless Transportation System. Challenges and Approaches in an Unstructured Road. Electronics. 2021;10(15). https://doi.org/10.3390/electronics10151753

36. Meshram A.T., Vanalkar A.V., Kalambe K.B., Badar A.M. Pesticide Spraying Robot for Precision Agriculture: A Categorical Literature Review and Future Trends. Journal of Field Robotics. 2021;39(2):153–171. https://doi.org/10.1002/rob.22043

37. Badrloo S., Varshosaz M., Pirasteh S., Li J. Image-Based Obstacle Detection Methods for the Safe Navigation of Unmanned Vehicles: A Review. Remote Sensing. 2022;14(15). https://doi.org/10.3390/rs14153824

38. Kolar P., Benavidez P., Jamshidi M. Survey of Datafusion Techniques for Laser and Vision Based Sensor Integration for Autonomous Navigation. Sensors. 2020;20(8). https://doi.org/10.3390/s20082180

39. Miao Q., Lv Yi., Huang M., Wang X., Wang F.-Yu. Parallel Learning: Overview and Perspective for Computational Learning Across Syn2Real and Sim2Real. IEEE/CAA Journal of Automatica Sinica. 2023;10(3):603–631. https://doi.org/10.1109/JAS.2023.123375

40. He M., Yue X., Zheng Yu., et al. State of the Art and Future Trends in Obstacle-Surmounting Unmanned Ground Vehicle Configuration and Dynamics. Robotica. 2023;41(9):2625–2647. https://doi.org/10.1017/S0263574723000577

41. Rateke Th., Justen K.A., Chiarella V.F., et al. Passive Vision Region-Based Road Detection: A Literature Review. ACM Computing Surveys. 2019;52(2). https://doi.org/10.1145/3311951

42. Velasco-Hernandez G., Yeong D.J., Barry J., Walsh J. Autonomous Driving Architectures, Perception and Data Fusion: A Review. In: 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), 03–05 September 2020, Cluj-Napoca, Romania. IEEE; 2020. P. 315–321. https://doi.org/10.1109/ICCP51029.2020.9266268

43. Xiao D., Dianati M., Geiger W.G., Woodman R. Review of Graph-Based Hazardous Event Detection Methods for Autonomous Driving Systems. IEEE Transactions on Intelligent Transportation Systems. 2023;24(5):4697–4715. https://doi.org/10.1109/TITS.2023.3240104

44. Janai J., Güney F., Behl A., Geiger A. Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art. Foundations and Trends® in Computer Graphics and Vision. 2020;12(1–3):1–308. https://doi.org/10.1561/0600000079

45. Ryu S., Won J., Chae H., Kim H.S., Seo T. Evaluation Criterion of Wheeled Mobile Robotic Platforms on Grounds: A Survey. International Journal of Precision Engineering and Manufacturing. 2024;25(3):675–686. https://doi.org/10.1007/s12541-023-00912-6

46. Cumbajin E., Rodrigues N., Costa P., et al. A Systematic Review on Deep Learning with CNNs Applied to Surface Defect Detection. Journal of Imaging. 2023;9(10). https://doi.org/10.3390/jimaging9100193

47. Liao Yi., Xie J., Geiger A. KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2023;45(3):3292–3310. https://doi.org/10.1109/TPAMI.2022.3179507

48. Cordts M., Omran M., Ramos S., et al. The Cityscapes Dataset for Semantic Urban Scene Understanding. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June 2016, Las Vegas, NV, USA. IEEE; 2016. P. 3213–3223. https://doi.org/10.1109/CVPR.2016.350

49. Neuhold G., Ollmann T., Bulò S.R., Kontschieder P. The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: 2017 IEEE International Conference on Computer Vision (ICCV), 22–29 October 2017, Venice, Italy. IEEE; 2017. P. 5000–5009. https://doi.org/10.1109/ICCV.2017.534

50. Yu F., Chen H., Wang X., et al. BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13–19 June 2020, Seattle, WA, USA. IEEE; 2020. P. 2633–2642. https://doi.org/10.1109/CVPR42600.2020.00271

51. Caesar H., Bankiti V., Lang A.H., et al. nuScenes: A Multimodal Dataset for Autonomous Driving. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13–19 June 2020, Seattle, WA, USA. IEEE; 2020. P. 11618–11628. https://doi.org/10.1109/CVPR42600.2020.01164

52. Che E., Jung J., Olsen M.J. Object Recognition, Segmentation, and Classification of Mobile Laser Scanning Point Clouds: A State of the Art Review. Sensors. 2019;19(4). https://doi.org/10.3390/s19040810

53. Rathee M., Bačić B., Doborjeh M. Automated Road Defect and Anomaly Detection for Traffic Safety: A Systematic Review. Sensors. 2023;23(12). https://doi.org/10.3390/s23125656

54. Ly A.O., Akhloufi M. Learning to Drive by Imitation: An Overview of Deep Behavior Cloning Methods. IEEE Transactions on Intelligent Vehicles. 2021;6(2):195–209. https://doi.org/10.1109/TIV.2020.3002505

55. Razali M.R., Faudzi A.A.M., Shamsudin A.U. Visual Simultaneous Localization and Mapping: A Review. PERINTIS eJournal. 2022;12(1):23–34.

56. Yeong D.J., Barry J., Walsh J. A Review of Multi-Sensor Fusion System for Large Heavy Vehicles Off Road in Industrial Environments. In: 2020 31st Irish Signals and Systems Conference (ISSC), 11–12 June 2020, Letterkenny, Ireland. IEEE; 2020. P. 1–6. https://doi.org/10.1109/ISSC49989.2020.9180186

57. Hussain M., O’Nils M., Lundgren J., Mousavirad S.J. A Comprehensive Review on Deep Learning-Based Data Fusion. IEEE Access. 2024;12:180093–180124. https://doi.org/10.1109/ACCESS.2024.3508271

58. Alaba S.Yi., Gurbuz A.C., Ball J.E. Emerging Trends in Autonomous Vehicle Perception: Multimodal Fusion for 3D Object Detection. World Electric Vehicle Journal. 2024;15(1). https://doi.org/10.3390/wevj15010020

59. Pan H., Huang Sh., Yang J. Recent Advances in Robot Navigation via Large Language Models: A Review. ResearchGate. URL: https://doi.org/10.13140/RG.2.2.35284.41603 [Accessed 3rd April 2025].

60. Sharma S., Dabbiru L., Hannis T., et al. CaT: CAVS Traversability Dataset for Off-Road Autonomous Driving. IEEE Access. 2022;10:24759–24768. https://doi.org/10.1109/ACCESS.2022.3154419

61. Gresenz G., White J., Schmidt D.C. An Off-Road Terrain Dataset Including Images Labeled With Measures of Terrain Roughness. In: 2021 IEEE International Conference on Autonomous Systems (ICAS), 11–13 August 2021, Montreal, QC, Canada. IEEE; 2021. P. 1–5. https://doi.org/10.1109/ICAS49788.2021.9551147

62. Triest S., Sivaprakasam M., Wang S.J., Wang W., Johnson A.M., Scherer S. TartanDrive: A Large-Scale Dataset for Learning Off-Road Dynamics Models. In: 2022 International Conference on Robotics and Automation (ICRA), 23–27 May 2022, Philadelphia, PA, USA. IEEE; 2022. P. 2546–2552. https://doi.org/10.1109/ICRA46639.2022.9811648

63. Liu Q., Li Z., Yuan Sh., Zhu Yu., Li X. Review on Vehicle Detection Technology for Unmanned Ground Vehicles. Sensors. 2021;21(4). https://doi.org/10.3390/s21041354

64. Singh A., Kalaichelvi V., Karthikeyan R. A Survey on Vision Guided Robotic Systems with Intelligent Control Strategies for Autonomous Tasks. Cogent Engineering. 2022;9(1). https://doi.org/10.1080/23311916.2022.2050020

65. Abdelsalam A., Happonen A., Kärhä K., Kapitonov A., Porras J. Toward Autonomous Vehicles and Machinery in Mill Yards of the Forest Industry: Technologies and Proposals for Autonomous Vehicle Operations. IEEE Access. 2022;10:88234–88250. https://doi.org/10.1109/ACCESS.2022.3199691

66. Vrochidou E., Oustadakis D., Kefalas A., Papakostas G.A. Computer Vision in Self-Steering Tractors. Machines. 2022;10(2). https://doi.org/10.3390/machines10020129

67. Racinskis P., Arents J., Greitans M. Constructing Maps for Autonomous Robotics: An Introductory Conceptual Overview. Electronics. 2023;12(13). https://doi.org/10.3390/electronics12132925

68. Tourani A., Bavle H., Sanchez-Lopez J.L., Voos H. Visual SLAM: What Are the Current Trends and What to Expect? Sensors. 2022;22(23). https://doi.org/10.3390/s22239297

69. Chghaf M., Rodriguez S., Ouardi A.E. Camera, LiDAR and Multi-modal SLAM Systems for Autonomous Ground Vehicles: A Survey. Journal of Intelligent & Robotic Systems. 2022;105(1). https://doi.org/10.1007/s10846-022-01582-8

70. Alkendi Yu., Seneviratne L., Zweiri Ya. State of the Art in Vision-Based Localization Techniques for Autonomous Navigation Systems. IEEE Access. 2021;9:76847–76874. https://doi.org/10.1109/ACCESS.2021.3082778

71. Schuetz E., Flohr F.B. A Review of Trajectory Prediction Methods for the Vulnerable Road User. Robotics. 2024;13(1). https://doi.org/10.3390/robotics13010001

72. Cheng J., Zhang L., Chen Q., Hu X., Cai J. A Review of Visual SLAM Methods for Autonomous Driving Vehicles. Engineering Applications of Artificial Intelligence. 2022;114. https://doi.org/10.1016/j.engappai.2022.104992

73. Roriz R., Silva H., Dias F., Gomes T. A Survey on Data Compression Techniques for Automotive LiDAR Point Clouds. Sensors. 2024;24(10). https://doi.org/10.3390/s24103185

74. Chen L., Feng Ch., Ma Yu., Zhao Yi., Wang Ch. A Review of Rigid Point Cloud Registration Based on Deep Learning. Frontiers in Neurorobotics. 2024;17. https://doi.org/10.3389/fnbot.2023.1281332

75. Vougioukas S.G. Agricultural Robotics. Annual Review of Control, Robotics, and Autonomous Systems. 2019;2:365–392. https://doi.org/10.1146/annurev-control-053018-023617

76. Xie D., Chen L., Liu L., Chen L., Wang H. Actuators and Sensors for Application in Agricultural Robots: A Review. Machines. 2022;10(10). https://doi.org/10.3390/machines10100913

77. Benrabah M., Mousse Ch.O., Randriamiarintsoa E., Chapuis R., Aufrère R. A Review on Traversability Risk Assessments for Autonomous Ground Vehicles: Methods and Metrics. Sensors. 2024;24(6). https://doi.org/10.3390/s24061909

78. Lohar Sh., Zhu L., Young S., Graf P., Blanton M. Sensing Technology Survey for Obstacle Detection in Vegetation. Future Transportation. 2021;1(3):672–685. https://doi.org/10.3390/futuretransp1030036

79. Mendez E., Camacho J.P., Cabello J.A.E., Gómez-Espinosa A. Autonomous Navigation and Crop Row Detection in Vineyards Using Machine Vision with 2D Camera. Automation. 2023;4(4):309–326. https://doi.org/10.3390/automation4040018

80. Marti E., de Miguel M.A., Garcia F., Perez J. A Review of Sensor Technologies for Perception in Automated Driving. IEEE Intelligent Transportation Systems Magazine. 2019;11(4):94–108. https://doi.org/10.1109/MITS.2019.2907630

81. Beycimen S., Ignatyev D., Zolotas A. A Comprehensive Survey of Unmanned Ground Vehicle Terrain Traversability for Unstructured Environments and Sensor Technology Insights. Engineering Science and Technology, an International Journal. 2023;47. https://doi.org/10.1016/j.jestch.2023.101457

82. Kabir M.M., Jim J.R., Istenes Z. Terrain Detection and Segmentation for Autonomous Vehicle Navigation: A State-Of-The-Art Systematic Review. Information Fusion. 2025;113. https://doi.org/10.1016/j.inffus.2024.102644

83. Zhong Ch., Li B., Wu T. Off-Road Drivable Area Detection: A Learning-Based Approach Exploiting LiDAR Reflection Texture Information. Remote Sensing. 2023;15(1). https://doi.org/10.3390/rs15010027

84. Gomes T., Matias D., Campos A., Cunha L., Roriz R. A Survey on Ground Segmentation Methods for Automotive LiDAR Sensors. Sensors. 2023;23(2). https://doi.org/10.3390/s23020601

85. Liu R., Yandun F., Kantor G. Towards Over-Canopy Autonomous Navigation: Crop-Agnostic LiDAR-Based Crop-Row Detection in Arable Fields. arXiv. URL: https://doi.org/10.48550/arXiv.2403.17774 [Accessed 3rd April 2025].

86. Nahavandi S., Alizadehsani R., Nahavandi D., et al. A Comprehensive Review on Autonomous Navigation. ACM Computing Surveys. 2025;57(9). https://doi.org/10.1145/3727642

87. Yang L., Li P., Qian S., et al. Path Planning Technique for Mobile Robots: A Review. Machines. 2023;11(10). https://doi.org/10.3390/machines11100980

88. Balestrieri E., Daponte P., De Vito L., Lamonaca F. Sensors and Measurements for Unmanned Systems: An Overview. Sensors. 2021;21(4). https://doi.org/10.3390/s21041518

89. Islam F., Nabi M.M., Ball J.E. Off-Road Detection Analysis for Autonomous Ground Vehicles: A Review. Sensors. 2022;22(21). https://doi.org/10.3390/s22218463

90. Rateke T., von Wangenheim A. Passive Vision Road Obstacle Detection: A Literature Mapping. International Journal of Computers and Applications. 2022;44(4):376–395. https://doi.org/10.1080/1206212X.2020.1758877

91. Wijayathunga L., Rassau A., Chai D. Challenges and Solutions for Autonomous Ground Robot Scene Understanding and Navigation in Unstructured Outdoor Environments: A Review. Applied Sciences. 2023;13(17). https://doi.org/10.3390/app13179877

92. Cui Ya., Chen R., Chu W., et al. Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review. IEEE Transactions on Intelligent Transportation Systems. 2022;23(2):722–739. https://doi.org/10.1109/TITS.2020.3023541

93. Lee S.Ch., Nevatia R. Robust Camera Calibration Tool for Video Surveillance Camera in Urban Environment. In: CVPR 2011 Workshops, 20–25 June 2011, Colorado Springs, CO, USA. IEEE; 2011. P. 62–67. https://doi.org/10.1109/CVPRW.2011.5981777

94. Egortsev M.V., Diane S.K., Kaz N.D. Algorithmic Support of the System of External Observation and Routing of Autonomous Mobile Robots. Russian Technological Journal. 2021;9(3):15–23. (In Russ.). https://doi.org/10.32362/2500-316X-2021-9-3-15-23

95. Ferreira J.F., Portugal D., Andrada M.E., Machado P., Rocha R.P., Peixoto P. Sensing and Artificial Perception for Robots in Precision Forestry: A Survey. Robotics. 2023;12(5). https://doi.org/10.3390/robotics12050139

96. Wang L., Feng Yu., Wang Sh., Wei H. A Lightweight Approach to Understand Forest Roads for New Energy Vehicles. International Journal of Automotive Manufacturing and Materials. 2024;3(4). https://doi.org/10.53941/ijamm.2024.100022

97. Li X., Li Q., Yin Ch., Zhang J. Autonomous Navigation Technology for Low-Speed Small Unmanned Vehicle: An Overview. World Electric Vehicle Journal. 2022;13(9). https://doi.org/10.3390/wevj13090165

98. Guo X., Han J., Li J., et al. Water Hazard Detection: A 20-Year Review. Journal of Terramechanics. 2023;105:53–66. https://doi.org/10.1016/j.jterra.2022.11.002

99. Tan Zh., Zhang X., Teng Sh., Wang L., Gao F. A Review of Deep Learning-Based LiDAR and Camera Extrinsic Calibration. Sensors. 2024;24(12). https://doi.org/10.3390/s24123878

100. Belkin I.V., Abramenko A.A., Bezuglyi V.D., Yudin D.A. Localization of Mobile Robot in Prior 3D LiDAR Maps Using Stereo Image Sequence. Computer Optics. 2024;48(3):406–417. https://doi.org/10.18287/2412-6179-CO-1369

101. Wang T., Chen B., Zhang Zh., Li H., Zhang M. Applications of Machine Vision in Agricultural Robot Navigation: A Review. Computers and Electronics in Agriculture. 2022;198. https://doi.org/10.1016/j.compag.2022.107085

102. Mo Yu., Wu Ya., Yang X., Liu F., Liao Yu. Review the State-Of-The-Art Technologies of Semantic Segmentation Based on Deep Learning. Neurocomputing. 2022;493:626–646. https://doi.org/10.1016/j.neucom.2022.01.005

103. Kuutti S., Bowden R., Jin Ya., Barber Ph., Fallah S. A Survey of Deep Learning Applications to Autonomous Vehicle Control. IEEE Transactions on Intelligent Transportation Systems. 2021;22(2):712–733. https://doi.org/10.1109/TITS.2019.2962338

104. Rybczak M., Popowniak N., Lazarowska A. A Survey of Machine Learning Approaches for Mobile Robot Control. Robotics. 2024;13(1). https://doi.org/10.3390/robotics13010012

105. Zhao R., Li Yu., Fan Yu., Gao F., Tsukada M., Gao Zh. A Survey on Recent Advancements in Autonomous Driving Using Deep Reinforcement Learning: Applications, Challenges, and Solutions. IEEE Transactions on Intelligent Transportation Systems. 2024;25(12):19365–19398. https://doi.org/10.1109/TITS.2024.3452480

106. Tang Ch., Abbatematteo B., Hu J., Chandra R., Martín-Martín R., Stone P. Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes. Annual Review of Control, Robotics, and Autonomous Systems. 2025;8:153–188. https://doi.org/10.1146/annurev-control-030323-022510

107. Ren X., Huang B., Yin H. A Review of the Large-Scale Application of Autonomous Mobility of Agricultural Platform. Computers and Electronics in Agriculture. 2023;206. https://doi.org/10.1016/j.compag.2023.107628

108. Liu L., Liu H., Wang X., et al. Application of Path Planning and Tracking Control Technology in Mower Robots. Agronomy. 2024;14(11). https://doi.org/10.3390/agronomy14112473

109. Yao Zh., Zhao Ch., Zhang T. Agricultural Machinery Automatic Navigation Technology. iScience. 2024;27(2). https://doi.org/10.1016/j.isci.2023.108714

110. Rego G.E., Korzun D.Zh., Shchegoleva L.V. Forest Robot Project: A Conceptual Model for Analyzing the Motion of a Mobile Robotic System for Reforestation and Cleaning Cutting. In: Perspektivy i vozmozhnosti ispol'zovaniya tsifrovykh tekhnologii v nauke, obrazovanii i upravlenii: sbornik materialov Vserossiiskoi nauchno-prakticheskoi konferentsii, 21–23 April 2022, Astrakhan, Russia. Astrakhan: Tatishchev Astrakhan State University; 2022. P. 206–210. (In Russ.).

111. Viktorova A.P. Ispol'zovanie robotov v sel'skom khozyaistve. In: Issledovaniya molodykh uchenykh: materialy XVIII Mezhdunarodnoi nauchnoi konferentsii, 20–23 March 2021, Kazan, Russia. Kazan: Molodoi uchenyi; 2021. P. 6–9. (In Russ.).

112. Xu R., Li Ch. A Review of High-Throughput Field Phenotyping Systems: Focusing on Ground Robots. Plant Phenomics. 2022;2022. https://doi.org/10.34133/2022/9760269

113. Devyatovskaya A.D., Biryuchkov N.E., Liakh T.V., Chaika K.V. SLAM in Duckietown Simulator Using the OpenVSLAM Framework. Vestnik NSU. Series: Information Technologies. 2021;19(4):36–49. (In Russ.). https://doi.org/10.25205/1818-7900-2021-19-4-36-49

114. Terekhov M.A. Overview of Modern Approaches to Visual Odometry. Software Engineering. 2019;(3):5–14. (In Russ.). https://doi.org/10.32603/2071-2340-2019-3-5-14

Bychkov Alexander

ORCID |

MIREA - Russian Technological University

Moscow, Russian Federation

Bulanov Alexey

ORCID |

MIREA - Russian Technological University

Moscow, Russian Federation

Keywords: off-road, dirt roads, obstacle detection, depth sensors, off-road classification, datasets

For citation: Bychkov A., Bulanov A. Review and analysis of optical sensor-based technical vision systems technologies for autonomous navigation on dirt roads. Modeling, Optimization and Information Technology. 2025;13(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1892 DOI: 10.26102/2310-6018/2025.49.2.045 (In Russ).

18

Full text in PDF

Received 12.04.2025

Revised 02.06.2025

Accepted 16.06.2025