Разработка программного обеспечения для определения упругих характеристик многослойного композиционного материала
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Development of software for evaluating the elastic properties of multilayer composite materials

idBokhoeva L.A., Titov V.A.,  Shatov M.S.,  Targashin K.V.,  idMei S.

UDC 004.9
DOI: 10.26102/2310-6018/2025.51.4.021

  • Abstract
  • List of references
  • About authors

This paper presents the development of software for the automated computation of the elastic properties of multilayer composite materials (MCM) intended for use in structures subjected to high-velocity impact loading. The generated array of calculated data can be used for training and testing artificial neural networks used in predicting the ballistic characteristics of MCM subjected to high-speed impact loads. An algorithm has been developed to determine the elastic characteristics of a composite laminate, encompassing the transition from fiber and matrix volume fractions to the properties of a unidirectional composite and subsequently to the full multilayered structure. The implementation includes strength assessment based on the Mises–Hill failure criterion, as well as support for batch data processing via Excel spreadsheets. The software provides analysis of stacking sequences comprising layers of various materials, thicknesses, fiber orientation angles, and through-thickness arrangements. The results will serve as a foundation for the development of an integrated approach to the design of composite structures. The developed software can be used as a standalone tool for engineering analysis or as part of integrated numerical modeling systems. The obtained results significantly reduce the time required to prepare input data for numerical simulations and ensure greater accuracy of initial parameters.

1. Olivenko N.A., Kudryavtsev O.A., Ignatova A.V. Simplified Approach to Verification of Numerical Models for Deformation and Fracture Analysis of Structural Composite Subjected to High-Velocity Impact. Defect and Diffusion Forum. 2022;419:117–123. https://doi.org/10.4028/p-3ivuh1

2. Arias Á., López-Puente J., Loya J.A., Varas D., Zaera R. Analysis of High-Speed Impact Problems in the Aircraft Industry. In: Constitutive Relations under Impact Loadings: Experiments, Theoretical and Numerical Aspects. Vienna: Springer; 2014. P. 137–207. https://doi.org/10.1007/978-3-7091-1768-2_4

3. Pernas-Sánchez J., Pedroche D.A., Varas D., López-Puente J., Zaera R. Numerical Modeling of Ice Behavior Under High Velocity Impacts. International Journal of Solids and Structures. 2012;49(14):1919–1927. https://doi.org/10.1016/j.ijsolstr.2012.03.038

4. Olsson R., Juntikka R., Asp L.E. High Velocity Hail Impact on Composite Laminates – Modelling and Testing. In: Dynamic Failure of Composite and Sandwich Structures. Dordrecht: Springer; 2013. P. 393–426. https://doi.org/10.1007/978-94-007-5329-7_9

5. Meo M., Morris A.J., Vignjevic R., Marengo G. Numerical Simulations of Low-Velocity Impact on an Aircraft Sandwich Panel. Composite Structures. 2003;62(3–4):353–360. https://doi.org/10.1016/j.compstruct.2003.09.035

6. Anghileri M., Castelletti L.-M.L., Invernizzi F., Mascheroni M. A Survey of Numerical Models for Hail Impact Analysis Using Explicit Finite Element Codes. International Journal of Impact Engineering. 2005;31(8):929–944. https://doi.org/10.1016/j.ijimpeng.2004.06.009

7. Artero-Guerrero J.A., Pernas-Sánchez J., Martín-Montal J., Varas D., López-Puente J. The Influence of Laminate Stacking Sequence on Ballistic Limit Using a Combined Experimental/FEM/Artificial Neural Networks (ANN) Methodology. Composite Structures. 2018;183:299–308. https://doi.org/10.1016/j.compstruct.2017.03.068

8. Qiu Ch., Han Yu., Shanmugam L., et al. A Deep Learning-Based Composite Design Strategy for Efficient Selection of Material and Layup Sequences from a Given Database. Composites Science and Technology. 2022;230(2). https://doi.org/10.1016/j.compscitech.2021.109154

9. Fernández-Fdz D., López-Puente J., Zaera R. Prediction of the Behaviour of CFRPs Against High-Velocity Impact of Solids Employing an Artificial Neural Network Methodology. Composites Part A: Applied Science and Manufacturing. 2008;39(6):989–996. https://doi.org/10.1016/j.compositesa.2008.03.002

10. Sorour Sh.S., Saleh Ch.A., Shazly M. A Review on Machine Learning Implementation for Predicting and Optimizing the Mechanical Behaviour of Laminated Fiber-Reinforced Polymer Composites. Heliyon. 2024;10(13). https://doi.org/10.1016/j.heliyon.2024.e33681

11. Bokhoeva L.A., Baldanov A.B., Rogov V.E. The Features of Interlayer Fracture of Composite Materials with a Variable Layup Angle Under Impact Loading. Diagnostics, Resource and Mechanics of Materials and Structures. 2024;(2):50–60. (In Russ.). https://doi.org/10.17804/2410-9908.2024.2.050-060

12. Riccio A., Caputo F., Di Felice G., Saputo S., Toscano C., Lopresto V. A Joint Numerical-Experimental Study on Impact Induced Intra-Laminar and Inter-Laminar Damage in Laminated Composites. Applied Composite Materials. 2016;23(3):219–237. https://doi.org/10.1007/s10443-015-9457-0

13. Bokhoeva L.A., Baldanov A.B., Rogov V.E. Mathematical Modeling of Loss of Stability of Local Delaminations Caused by High-Speed Impact. Engineering Journal: Science and Innovation. 2022;(12). (In Russ.). https://doi.org/10.18698/2308-6033-2022-12-2233

14. Bokhoyeva L.A., Damdinov T.A. On Determination of Critical Loads by Shear Strain-Energy Method. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva. 2006;(1):3–7. (In Russ.).

15. Dos Santos Souza L.F., Vandepitte D., Tita V., De Medeiros R. Dynamic Response of Laminated Composites Using Design of Experiments: An Experimental and Numerical Study. Mechanical Systems and Signal Processing. 2019;115:82–101. https://doi.org/10.1016/j.ymssp.2018.05.022

16. Hashin Z. Failure Criteria for Unidirectional Fiber Composites. Journal of Applied Mechanics. 1980;47(2):329–334. https://doi.org/10.1115/1.3153664

Bokhoeva Lyubov Alexandrovna
Doctor of Engineering Sciences, Professor

ORCID | eLibrary |

East Siberia State University of Technology and Management

Ulan-Ude, Russian Federation

Titov Vadim Andreevich

Email: i.titov.SCI@yandex.ru

eLibrary |

Dorzhi Banzarov Buryat State University
East Siberia State University of Technology and Management

Ulan-Ude, Russian Federation

Shatov Maksim Sergeevich

eLibrary |

East Siberia State University of Technology and Management

Ulan-Ude, Russian Federation

Targashin Kirill Vladimirovich

East Siberia State University of Technology and Management

Ulan-Ude, Russian Federation

Mei Shunqi
Doctor of Engineering Sciences, Professor

ORCID | eLibrary |

Wuhan Textile University

Wuhan, China

Keywords: elastic properties, composite, elastic properties determination algorithm, database, layer stacking

For citation: Bokhoeva L.A., Titov V.A., Shatov M.S., Targashin K.V., Mei S. Development of software for evaluating the elastic properties of multilayer composite materials. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1908 DOI: 10.26102/2310-6018/2025.51.4.021 (In Russ).

56

Full text in PDF

Received 13.05.2025

Revised 08.10.2025

Accepted 17.10.2025