Моделирование электрофизических свойств отражающего экрана на основе нанокомпозитов фрактальной структуры для арктических мобильных комплексов
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Modeling the electrophysical properties of a reflective screen based on fractal nanocomposites for Arctic mobile systems

idSerdechnyy D.V., idKorchagin S.A., idAndriyanov N.A.

UDC 004.942
DOI: 10.26102/2310-6018/2025.51.4.041

  • Abstract
  • List of references
  • About authors

The electrophysical properties of a reflective screen were modeled. The grid elements have a layered, hierarchically constructed structure based on a nanocomposite, similar to fractal formations. The study aims to address the problem of creating effective, lightweight, and extreme-condition-resistant reflective structures for Arctic mobile systems, where traditional screens face limitations due to their large mass, high aerodynamic drag, and performance degradation during icing. Using the developed specialized software package, the influence of the grid element fractality level on the reflectivity over a wide frequency range was studied in low-temperature conditions and the complex Arctic radio wave environment. It was found that increasing the fractality level significantly expands the operating frequency range compared to traditional periodic structures and improves energy efficiency. The multiresonant nature of fractal geometry provides flexibility in managing spectral characteristics. The results obtained can be used in the development of broadband radar systems, remote monitoring systems for mobile objects, including ships and ground transport, in the Arctic, as well as for the creation of secure communication channels and intelligent information security systems in polar night conditions and ionospheric disturbances.

1. Leukhin S.A., Kazakov I.V., Gol'tyaev I.V. Issledovanie pogloshchayushchikh svoistv piramidal'nykh poglotitelei s primeneniem vremennoi selektsii. Elektronika i mikroelektronika SVCh. 2021;1:582–585. (In Russ.).

2. Filonovich A.V., Vornacheva I.V., Stepanova V.V., Artyukhova V.I. Adaptive Processing of Stochastic Signals of Various Structures in Basic Correlation Systems of Passive Radar. News of the Tula State University. Technical Sciences. 2023;(7):531–537. (In Russ.).

3. He Q.-M., Tao J.-R., Yang Y., et al. Electric-Magnetic-Dielectric Synergism and Salisbury Screen Effect in Laminated Polymer Composites with Multiwall Carbon Nanotube, Nickel, and Antimony Trioxide for Enhancing Electromagnetic Interference Shielding. Composites Part A: Applied Science and Manufacturing. 2022;156. https://doi.org/10.1016/j.compositesa.2022.106901

4. Lupone F., Padovano E., Casamento F., Badini C. Process Phenomena and Material Properties in Selective Laser Sintering of Polymers: A Review. Materials. 2022;15(1). https://doi.org/10.3390/ma15010183

5. Arumov G.P., Bukharin A.V., Makarov V.S. Three-Dimensional Reflecting Objects in the Problem of Modeling a Lidar Signal from a Scattering Layer. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2022;19(4):328–334. (In Russ.). https://doi.org/10.21046/2070-7401-2022-19-4-328-334

6. Golovastov S., Mikushkin A., Mikushkina A., Zhilin Yu. Interaction of Weak Shock Waves with Perforated Metal Plates. Experiments in Fluids. 2022;63(6). https://doi.org/10.1007/s00348-022-03451-4

7. Tang H., Wen T., Zhou Y., You J., Ma D. Study on the Wrinkling Behavior of Perforated Metallic Plates Using Uniaxial Tensile Tests. Thin-Walled Structures. 2021;167. https://doi.org/10.1016/j.tws.2021.108132

8. Korchagin S.A. Mathematical Modeling of the Electrical Conductivity of a Nanocomposite Based on Carbon Nanotubes, Taking into Account the Waviness Effect and Dispersion Index. Engineering Journal of Don. 2024;(3). (In Russ.). URL: http://www.ivdon.ru/en/magazine/archive/n3y2024/9073

9. Khoda B., Ahsan A.M.M.N., Shovon A.N., Alam A.I. 3D Metal Lattice Structure Manufacturing with Continuous Rods. Scientific Reports. 2021;11(1). https://doi.org/10.1038/s41598-020-79826-6

10. Behrle R., Murphey C.G.E., Cahoon J.F., et al. Understanding the Electronic Transport of Al–Si and Al–Ge Nanojunctions by Exploiting Temperature-Dependent Bias Spectroscopy. ACS Applied Materials & Interfaces. 2024;16(15):19350–19358. https://doi.org/10.1021/acsami.3c18674

11. Jiménez A.M.B., Sichevych O., Spanos I., Altendorf S.G., Ormeci A., Antonyshyn I. Al–Pt Compounds Catalyzing the Oxygen Evolution Reaction. Dalton Transactions. 2023;52(5):1433–1440.

12. Born M., Wolf E. Principles of Optics. Moscow: Nauka; 1973. 720 p. (In Russ.).

Serdechnyy Denis V.
Candidate of Engineering Sciences, Docent

ORCID |

State University of Management

Moscow, Russian Federation

Korchagin Sergei A.
Candidate of Physical and Mathematical Sciences, Docent

ORCID |

State University of Management

Moscow, Russian Federation

Andriyanov Nikita A.
Candidate of Engineering Sciences, Docent

ORCID |

State University of Management

Moscow, Russian Federation

Keywords: modeling of electrophysical properties, reflecting the screen, nanocomposites, arctic mobile complexes, radar, fractal structure, software complex

For citation: Serdechnyy D.V., Korchagin S.A., Andriyanov N.A. Modeling the electrophysical properties of a reflective screen based on fractal nanocomposites for Arctic mobile systems. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=2098 DOI: 10.26102/2310-6018/2025.51.4.041 (In Russ).

34

Full text in PDF

Received 16.10.2025

Revised 12.11.2025

Accepted 18.11.2025