Миварные модель и алгоритм обработки информации для избегания динамических препятствий с изменяющейся зоной безопасности
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Mivar model and algorithm of information processing for avoiding dynamic obstacles with a changing safety zone

idShen Q.

UDC 004.89+004.032.26+007.52
DOI: 10.26102/2310-6018/2026.52.1.004

  • Abstract
  • List of references
  • About authors

We propose a mivar model and a mivar algorithm for dynamic trajectory planning in large indoor spaces with dense crowds of moving people. The main idea is to calculate the parameters of an elliptical changing safety zone for dynamic obstacles by integrating semantic object detection and geometric mapping. The mivar model relies on semantic information: object class, speed, and scene factors. The mivar expert system calculates key parameters of the safety zone and prediction position, providing differentiated safety margins for various semantic targets, such as children, the elderly, and adults. The calculated safety zone will be considered in path planning as the size of the obstacle itself. The scientific innovation lies in the use of dynamic ellipses, changing their size depending on semantic information, to determine the safety zone of dynamic obstacles. The mivar algorithm was verified on a platform implemented in Python using Pygame, with integration of the data exchange interface with the Wi!Mi. This allowed for visualization of the planning process, confirmation of effectiveness, and quantification of safety gains. Prospects for research include deep integration with machine learning methods to enhance the robustness and flexibility of rule updates.

1. Cottam R., Vounckx R. Intelligence: Natural, Artificial, or What? BioSystems. 2024;246. https://doi.org/10.1016/j.biosystems.2024.105343

2. Akhtyamov T., Kashirin A., Postnikov A., Sosin I., Ferrer G. Social Robot Navigation Through Constrained Optimization: A Comprehensive Study of Uncertainty-Based Objectives and Constraints in the Simulated and Real World. Robotics and Autonomous Systems. 2025;183. https://doi.org/10.1016/j.robot.2024.104830

3. Kuznetsova I.V., Sheremet'ev G.G., Abaza I.G. Roboty na sluzhbe zdravookhraneniya: robot-medik "Da Vinci". Tendentsii razvitiya nauki i obrazovaniya. 2024;(111-8):162–165. (In Russ.).

4. Trefilov S.А., Khodyrev G.V. Development of a Mathematical Model of a Highly Maneuverable Robot for Simulation of Robots with Different Types of Designs. Vestnik IzhGTU Imeni M.T. Kalashnikova. 2024;27(3):38–48. (In Russ.). https://doi.org/10.22213/2413-1172-2024-3-38-48

5. Myradov P., Shirmyradov M., Bairamov N., Rovshenov D. Roboty dlya avtomatizatsii sborki elektroniki: vnedrenie robotov v proizvodstvennye linii dlya povysheniya effektivnosti. Akademicheskaya publitsistika. 2024;(11-2):63–65. (In Russ.).

6. Chen B., Kwiatkowski R., Vondrick C., Lipson H. Fully Body Visual Self-Modeling of Robot Morphologies. Science Robotics. 2022;7(68). https://doi.org/10.1126/scirobotics.abn1944

7. Mokeev M.V. Prospects for the Use of Robot Baristas and Robot Bartenders in the Restaurant Business in Russia. In: Razvitie sfery uslug v usloviyakh globalizatsii ekonomiki: sovremennye trendy, aktual'nye problemy i puti ikh resheniya: Sbornik statei po materialam IV Mezhdunarodnoi nauchno-prakticheskoi konferentsii, 27 December 2024, Nizhny Novgorod, Russia. Nizhny Novgorod: Nizhegorodskii gosudarstvennyi inzhenerno-ekonomicheskii universitet; 2024. P. 202–205. (In Russ.).

8. Bizhanova O., Salykova O., Moldamurat H., Ivanova I. Methods of Planning the Trajectory of a Mobile Robot in Conditions of Uncertainty. Vestnik Kazakhskoi akademii transporta i kommunikatsii im. M. Tynyshpaeva. 2023;(6):339–346.

9. Wang X., Tang K., Dai X., et al. Safety-Balanced Driving-Style Aware Trajectory Planning in Intersection Scenarios with Uncertain Environment. IEEE Transactions on Intelligent Vehicles. 2023;8(4):2888–2898. https://doi.org/10.1109/tiv.2023.3239903

10. Long Z., Killick G., McCreadie R., Aragon-Camarasa G. RoboLLM: Robotic Vision Tasks Grounded on Multimodal Large Language Models. In: 2024 IEEE International Conference on Robotics and Automation (ICRA), 13–17 May 2024, Yokohama, Japan. IEEE; 2024. P. 12428–12435. https://doi.org/10.1109/ICRA57147.2024.10610797

11. Shen Q., Gong Sh., Varlamov O.O., Adamova L.E., Balenko E.G. Dynamic Robot Path Planning Based on Semantic Object Detection Using Mivar Expert System. Problems of Artificial Intelligence. 2024;(4):164–176. (In Russ.). https://doi.org/10.24412/2413-7383-2024-4-164-176

12. Stepanov T.I. The Object Detection and Identification Significance in the Modern World (On the Examples of OpenCV Technology). In: All-Russian Contest for the Student's Scientific Project in a Foreign Language: Materials of the All-Russian Student’s Scientific Projects Contest, 19 May 2022, Ulan-Ude, Russia. Ulan-Ude: Buryat State University Publishing Department; 2022. P. 75–79.

13. Logunov S.V., Kupriyanov N.A. Ranking Method of Catalogued Space Objects Used to Improve the Accuracy of Determining the Objects Coordinates by Long-Range Detection Radar. Voprosy radioelektroniki. Seriya: Tekhnika televideniya. 2019;(1):75–84. (In Russ.).

14. Dou L. On the Creation of a Mivar Expert System for Evacuation of People in Case of Fire. In: Chetvertaya mezhdunarodnaya nauchnaya konferentsiya molodezhnoi shkoly "Mivar '25": Sbornik nauchnykh statei, 17–19 April 2025, Moscow, Russia. Moscow: INFRA-M; 2025. P. 380–382. (In Russ.).

15. Davarzani Sh., Ejaz M.T. A 2D Path-Planning Performance Comparison of RRT and RRT* for Unmanned Ground Vehicle. IAES International Journal of Robotics and Automation. 2024;13(1):105–112. https://doi.org/10.11591/ijra.v13i1.pp105-112

16. Sudharsan Bh., Breslin J.G., Ali M.I. ML-MCU: A Framework to Train ML Classifiers on MCU-Based IoT Edge Devices. IEEE Internet of Things Journal. 2022;9(16):15007–15017. https://doi.org/10.1109/jiot.2021.3098166

17. Varlamov O. "Brains" for Robots: Application of the Mivar Expert Systems for Implementation of Autonomous Intelligent Robots. Big Data Research. 2021;25. https://doi.org/10.1016/j.bdr.2021.100241

18. Shen Q., Gong Sh., Liu Zh., Liu An., Timofeev V.B., Varlamov O.O. Robot Path Planning Algorithm Based on Object Detection Technology Using MES. In: Mezhdunarodnaya nauchnaya konferentsiya molodezhnoi shkoly "MIVAR '24": Sbornik nauchnykh statei, 18–20 April 2024, Moscow, Russia. Moscow: INFRA-M; 2024. P. 367–373.

19. Shen Q. On the Creation of a MES for Multisensory Data Fusion in Robotics. In: Chetvertaya mezhdunarodnaya nauchnaya konferentsiya molodezhnoi shkoly "Mivar '25": Sbornik nauchnykh statei, 17–19 April 2025, Moscow, Russia. Moscow: INFRA-M; 2025. P. 343–345. (In Russ.).

20. Gong S. Mivar Decision-Making System for Distribution and Transportation of Cargo by a Team of Warehouse Robots. Sistemy upravleniya i informatsionnye tekhnologii. 2025;(2):23–29. (In Russ.).

21. Aladin D.V. About the Approach to Automatic Generation of Mivar Knowledge Bases for Solving Control Problems. In: Chetvertaya mezhdunarodnaya nauchnaya konferentsiya molodezhnoi shkoly "Mivar '25": Sbornik nauchnykh statei, 17–19 April 2025, Moscow, Russia. Moscow: INFRA-M; 2025. P. 409–411. (In Russ.).

22. Chestnova E.A., Fedoseeva E.Yu., Vaganov D.D., et al. Development of the MES Knowledge Base for the Selection of Dosage Forms for Antibiotics and Antimycotics. Natural and Technical Sciences. 2023;(5):29–33. (In Russ.). https://doi.org/10.25633/ETN.2023.05.01

23. Goryachkin B.S., Baibarin R.G., Tyulkina N.V., Zaprudnov M.S. Ergonomic Analysis of the Representations of the Mivarnaya Model. Natural and Technical Sciences. 2022;(4):162–174. (In Russ.).

24. Nikitin P.V., Gorokhova R.I. Developing a Computer Vision Model for Region Detection in Visually Rich Documents. Modeling, Optimization and Information Technology. 2025;13(2). (In Russ.). https://doi.org/10.26102/2310-6018/2025.49.2.010

25. Terekhin M.A., Ivaschenko A.V., Kulakov G.A. A Conceptual Approach to the Integration of Artificial Intelligence into Engineering Activities. Modeling, Optimization and Information Technology. 2025;13(2). (In Russ.). https://doi.org/10.26102/2310-6018/2025.49.2.031

26. Juang L.-H. Humanoid Robot Action Using Multi-Mode Fusion Based on Frame Expert System. Multimedia Tools and Applications. 2024;84:1513–1536. https://doi.org/10.1007/s11042-024-19058-2

27. De A. Abilio A., Wolodko J.D., Eckert R.B., Skovhus T.L. Development of an Expert System for Assessing Failures in Oil and Gas Pipelines Due to Microbiologically Influenced Corrosion (MIC). Engineering Failure Analysis. 2024;163. https://doi.org/10.1016/j.engfailanal.2024.108426

28. Gulyutin N.N., Ermiyenko N.A., Antamoshkin O.A. Sensor Data Integration System in Onboard Control Systems of Unmanned Aerial Systems. Modeling, Optimization and Information Technology. 2025;13(1). (In Russ.). https://doi.org/10.26102/2310-6018/2025.48.1.019

29. Bhatia P., Thirunarayanan J., Dave N. An Expert System-Based Design of SCARA Robot. Expert Systems with Applications. 1998;15(1):99–109.

Shen Qiujie

Email: shencr01@gmail.com

Scopus | ORCID | eLibrary |

Bauman Moscow State Technical University

Moscow, Russian Federation

Keywords: dynamic obstacles, changing safety zone, semantic perception, mivar expert system, KESMI, robot trajectory planning, safety control, scene recognition, logical artificial intelligence

For citation: Shen Q. Mivar model and algorithm of information processing for avoiding dynamic obstacles with a changing safety zone. Modeling, Optimization and Information Technology. 2026;14(1). URL: https://moitvivt.ru/ru/journal/pdf?id=2115 DOI: 10.26102/2310-6018/2026.52.1.004 (In Russ).

22

Full text in PDF

Received 29.10.2025

Revised 19.12.2025

Accepted 12.01.2026