ИССЛЕДОВАНИЕ ГРАНИЦЫ КАСАТЕЛЬНОЙ БИФУРКАЦИИ В ОБНАРУЖИТЕЛЕ ПЕРИОДИЧЕСКИХ СИГНАЛОВ, ПОСТРОЕННОМ НА ОСНОВЕ ГЕНЕРАТОРА ДЕТЕРМИНИРОВАННОГО ХАОСА
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

STUDY OF THE BOUNDARY OF THE TANGENTIAL BIFURCATION IN DETECTOR OF PERIODIC SIGNALS, BASED ON CHAOTIC OSCILLATOR

Patrusheva T.V.,  Patrushev E.M. 

UDC 681.2.08
DOI:

  • Abstract
  • List of references
  • About authors

The article considers a method for detecting periodic signals under the background of random interference. The implementation of the detector on the basis of a non-autonomous chaotic oscillator is proposed. The authors have justified choosing a tangent bifurcation as the basis of the detection mechanism. It is assumed that in the absence of a detectable signal at the input of the chaotic oscillator, its operation mode will be chaotic, and if it is available, a periodic mode will be established. A numerical model of the detector in Matlab / Simulink is implemented, which implements a system of differential equations for the chaotic oscillator Murali-Lakshmanan-Chua. As an informative parameter of the detector, the amount of chaotic emissions during the detection period was chosen and theoretical dependencies for it were presented. The proposed model allowed to carry out statistical studies of the boundary of chaos and periodic oscillations for the chaos generator under the influence of random narrow-band interference. Based on the dependencies obtained, the optimal parameters of the system were selected. The study as a whole made it possible to conclude that the proposed detector can be used as a node of devices receiving an information signal against a background of non-stationary interference.

1. Tihonov V.I. Optimal'nyj priyom signalov. – M.: Radio i svyaz', 1983. – p.320.

2. Wang F., Xing H., Duan S., Yu H. Study on Chaos-Based Weak Signal Detection Method with Duffing Oscillator// Advances in Computer Science and Information Engineering, v2(169) - Berlin: Springer Berlin Heidelberg, 2012. – pp.21-26.

3. Yue Li, Yang Baojun Chaotic system for the detection of periodic signals under the background of strong noise// Chinese Science Bulletin, Vol. 48, No. 5, 2003. – pp. 508-510.

4. Maks Zh. Metody i tekhnika obrabotki signalov pri fizicheskih izmereniyah T.2. – M.: «Mir», 1983. – p.256.

5. Murali K., Lakshmanan M., Chua L.O. The simplest dissipative nonautonomous chaotic circuit // Trans. Circuits Syst, Vol. 41 – New York: Circuits and Systems Society, 1994. – pp. 462-463.

6. Patrusheva T. V., Patrushev E.M. Chislennoe modelirovanie processa obnaruzheniya periodicheskih signalov na fone preobladayushchih shumov v priborah kontrolya, osnovannyh na ispol'zovanii generatorov haosa //Polzunovskij al'manah, № 1 – Barnaul, 2013. – pp. 59-64.

7. Shuster G. Determinirovannyj haos: Vvedenie. – M.: Mir, 1988.– p.240.

8. Patrusheva T. V., Patrushev E.M., Nazdryuhin I.S. Detektor sostoyaniya v obnaruzhitele slabyh periodicheskih signalov na osnove generatora haosa/ T. V. Patrusheva, E.M.Patrushev // Polzunovskij al'manah No. 2 – Barnaul, 2016. – pp. 11-13.

9. Hramov A.E., Koronovskii A.A., Kurovskaja M.K. Length distribution of laminar phases for type-I intermittency in the presence of noise // Phys. Rev. E. 76 – 2007. 026206.

10. Koronovskij A.A., Kurovskaya M.K., Moskalenko O.I., Hramov A.E. Peremezhaemost' tipa I v prisutstvii shuma i peremezhaemost' igol'nogo ushka // Izvestiya vuzov. Prikladnaya nelinejnaya dinamika. Vol. 18, No. 1 – Saratov 2010. pp. 24-34.

11. Ovchinnikov A.A. Eksperimental'noe izuchenie peremezhaemosti tipa I v prisutstvii shuma i na primere generatora, sinhroniziruemogo vneshnim garmonicheskim signalom //Izvestiya vysshih uchebnyh zavedenij. Prikladnaya nelinejnaya dinamika. T.17, №6. – Saratov, 2009. pp.119- 124.

12. Patrusheva T. V., Patrushev E.M. Fotoehlektricheskij datchik diffuznogo tipa na osnove generatora haosa // Fundamental'nye issledovaniya. No. 6- 6. – Penza, 2013. pp. 1354-1358.

Patrusheva Tatyana Vasilievna

Altai State Technical University

Barnaul, Russian Federation

Patrushev Egor Mikhailovich
Candidate of Technical Sciences, Associate Professor

Altai State Technical University

Barnaul, Russian Federation

Keywords: chaotic oscillator, periodic signals detector, intermittency, tangential bifurcation, non-stationary interference

For citation: Patrusheva T.V., Patrushev E.M. STUDY OF THE BOUNDARY OF THE TANGENTIAL BIFURCATION IN DETECTOR OF PERIODIC SIGNALS, BASED ON CHAOTIC OSCILLATOR. Modeling, Optimization and Information Technology. 2017;5(2). URL: https://moit.vivt.ru/wp-content/uploads/2017/05/Patrushevi_2_17_1.pdf DOI: (In Russ).

867

Full text in PDF

Published 30.06.2017