Keywords: time-domain simulation, stiff systems, oscillating circuits, implicit runge–kutta methods, accuracy, stability
HYBRID METHODS OF HIGH ACCURACY ORDER FOR NUMERICAL ANALYSIS IN THE TIME DOMAIN OF STIFF AND OSCILLATING CIRCUITS
UDC 621.372:519.622
DOI:
This paper considers the problems of numerical analysis of electronic circuits in the time domain that arise when using modern circuit simulators based on SPICE. Time-domain analysis of circuits through modern electronic simulators is realized by means of Gear’s methods and the trapezoidal method. An important property of models of real electronic circuits and especially of RF circuits is simultaneous stiffness and oscillability of these models. In turn, Gear’s methods can lose stability for oscillating circuits’ analysis, because these methods are not P-stable, and the trapezoidal method has a sufficiently high error for stiff circuits’ analysis, because it is not L-stable. The aim of this paper is to develop hybrid Land P-stable methods based on the combination of various numerical methods for solving ordinary differential equations which provide a high accuracy of numerical simulation in the time domain of stiff and oscillating circuits. Hybrid methods are built on the basis of the known Rado IIA and Lobatto IIIA methods, which are subclasses of implicit Runge-Kutta methods. Comparative analysis of the known methods and the proposed hybrid methods demonstrates high accuracy of the latter methods for time-domain simulation of stiff and oscillating circuits and systems. Hybrid methods are also effective for numerical solving differential-algebraic equations that describe arbitrary electrical circuits.
1. Biryukov V.N. Chislennyy analiz zhestkikh uzkopolosnykh sistem / V.N. Biryukov, A.M. Pilipenko // Radiosistemy. 2002. No. 2(62). pp. 36-38.
2. Khayrer E. Reshenie obyknovennykh differentsial'nykh uravneniy. Zhestkie i differentsial'no-algebraicheskie zadachi. Per. s angl. / E. Khayrer, G. Vanner. M.: Mir, 1999. 685 p
3. Zhuk D.M. Metody i algoritmy resheniya differentsial'no-algebraicheskikh uravneniy dlya modelirovaniya dinamiki tekhnicheskikh sistem i ob"ektov / D.M. Zhuk, V.B. Manichev, A.O. Il'nitskiy // Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem (MES). 2008. No. 1. pp. 109-113.
4. Kholl D. Sovremennye chislennye metody resheniya obyknovennykh differentsial'nykh uravneniy / D. Kholl, D. Uatt. M.: Mir, 1979. 312 p.
5. Пилипенко А.М. Гибридные методы решения обыкновенных дифференциальных уравнений жестких и/или колебательных цепей / А.М. Пилипенко, В.Н. Бирюков // Радиотехника. 2011. № 1. С. 11-15.
6. Ascher U.M. Computer Methods for Ordinary Equations and Differential Algebraic Equations / U.M. Ascher, L.R. Petzold. Philadelphia, PA: SIAM, 1998. 314 p.
7. Maffezzoni P. Time-domain simulation of nonlinear circuits through implicit Runge-Kutta methods / P. Maffezzoni, L. Codecasa, D. D’Amore // IEEE Transactions. Circuits and Systems. 2007. Vol. 54. No. 2. Pp. 391-400.
8. Pilipenko A.M. Gibridnye metody analiza elektronnykh tsepey vo vremennoy oblasti / A.M. Pilipenko, V.N. Biryukov // Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem (MES). 2010. No. 1. pp. 92-95.
9. Pilipenko A.M. Methods of Testing Time-Domain Simulators in EDA Packages / A.M. Pilipenko, V.N. Biryukov, A.B. Fadeeva // Proceedings of 2016 IEEE East-West Design & Test Symposium, EWDTS. 2016. pp. 172- 175.
10. Kalitkin N.N. Chislennye metody resheniya zhestkikh sistem / N.N. Kalitkin // Matematicheskoe modelirovanie. 1995. Vol. 7. No. 5. pp. 8-11.
Keywords: time-domain simulation, stiff systems, oscillating circuits, implicit runge–kutta methods, accuracy, stability
For citation: Pilipenko A.M. HYBRID METHODS OF HIGH ACCURACY ORDER FOR NUMERICAL ANALYSIS IN THE TIME DOMAIN OF STIFF AND OSCILLATING CIRCUITS. Modeling, Optimization and Information Technology. 2017;5(3). URL: https://moit.vivt.ru/wp-content/uploads/2017/08/Pilipenko_3_1_17.pdf DOI: (In Russ).
Published 30.09.2017