Keywords: pursuit problem, pursuit object, pursuit object, horizontal projection of the velocity vector, horizontal projection of the velocity vector, christoffel symbols, local coordinate system
CONSTRUCTION OF GEODESIC LINES APPLIED TO THE PROBLEM OF PERSECUTION IN THE SYSTEM OF COMPUTER MATHEMATICS «MATHCAD»
UDC 519.67
DOI:
This article deals with the modeling of geodetic lines, with respect to the pursuit problem. When predicting the trajectory to the prospective location of the object of pursuit, it is preferable to use geodetic lines. For this, a local dynamic coordinate system is selected. The abscissa of a given coordinate system is a line belonging to the horizontal plane of projections and connecting the horizontal projections of the pursued point with the pursuing point. When solving a boundary problem with given boundary conditions in the form of the coordinates of points, the "shooting" method was used. To do this, a series of "shots" is produced from the haunting point in a given range of angles. Based on the results of a series of "shots", an interpolating curve is constructed, where the argument is the angle from the specified range, and the value is the minimum distance to the point of pursuit from the trajectory points. Further, by built-in means of computer mathematics systems, an angle is sought such that the minimum distance to the point of pursuit from the points of the trajectory is zero. As a programming environment, for clarity, the computer mathematics system "MathCAD" was chosen. The system "MathCAD" allows you to quickly and clearly make animated images, which allowed the results of the program to be placed on the channel "Youtube.com"
1. Dubanov A.A., EHrdyneeva L. I. Zadacha presledovaniya v sisteme vychislitel'noj matematiki «MathCAD»/ Dubanov A.A. Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij, 2016, № 9, str. 7-12
2. Rashevskij P.K. Kurs differencial'noj geometrii / Rashevskij P.K. Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoj literatury, M. – L., 1950 g., 428 s
3. Vygodskij M.YA. Differencial'naya geometriya / Vygodskij M.YA. Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoj literatury, M. – L., 1949 g., 513 s.
4. ZHukova N.I., Bagaev A.V. Geodezicheskie linii na poverhnostyah. Uchebno-metodicheskoe posobie. / ZHukova N.I., Bagaev A.V. Izdatel'stvo Nizhegorodskogo gosuniversiteta, N. Novgorod, 2008 g., 54 s.
5. Dubanov A.A. Geodezicheskie linii v zadache presledovaniya. Geodezicheskie/ Dubanov A.A. Sajt «Geometricheskoe modelirovanie v MathCAD» - URL : http://dubanov.exponenta.ru
6. Dubanov A.A. Geodezicheskie linii v zadache presledovaniya. Postroenie geodezicheskoj do begushchej tochki. Ispol'zvanie bloka «Given-Odesolve»/ Dubanov A.A. Sajt «Geometricheskoe modelirovanie v MathCAD» - URL : http://dubanov.exponenta.ru
7. Dubanov A.A. Geodezicheskaya liniya. Sajt http://www.youtube.com, URL : https://www.youtube.com/watch?v=XIzV9kQdM-s
Keywords: pursuit problem, pursuit object, pursuit object, horizontal projection of the velocity vector, horizontal projection of the velocity vector, christoffel symbols, local coordinate system
For citation: Dubanov A.A., Bildushkina M.N. CONSTRUCTION OF GEODESIC LINES APPLIED TO THE PROBLEM OF PERSECUTION IN THE SYSTEM OF COMPUTER MATHEMATICS «MATHCAD». Modeling, Optimization and Information Technology. 2018;6(3). URL: https://moit.vivt.ru/wp-content/uploads/2018/07/DubanovBildushkina_3_18_1.pdf DOI: (In Russ).
Published 30.09.2018