Keywords: games with non-opposite interests, nash equilibrium, structuralparametric model of the community, hierarchical structure of groups of players, the utility function of a group of players
THE STUDY OF THE PROPERTIES OF COMMUNITIES OF PLAYERS AND FUNCTIONS OF WIN IN GAMES WITH NON-OPPOSING INTERESTS
UDC 519.83:519.81
DOI: 10.26102/2310-6018/2018.23.4.027
When solving many applied problems, methods of game theory are used. In particular, when making management decisions, it is necessary to coordinate various aspects of decisions for which specialists in different fields are responsible. This leads to the need to use games with non-opposing interests and finding for them Nash equilibrium. The solution of this problem for the particular case of games with a hierarchical vector of interests is determined by the theorem of Germeyer and Vatel. However, in proving the theorem, a number of aspects were not taken into account. In particular, the conditions for constructing a hierarchical tree of groups of players are undefined and the properties of the functions of win for these groups are not fully described. In this paper, it is proposed to introduce the concepts of player goals and, on this basis, construct a structural-parametric model of a community of players, representing a fuzzy graph with a set of vertices corresponding to players, and arcs reflecting the coincidence of players' goals. The weights of the arcs are determined by the membership functions of fuzzy sets describing the significance of goals for players. The colors of the arcs correspond to the goals of the players. After that, the concept of a color clique is introduced and an algorithm is developed for constructing the hierarchical structure of groups based on the successive finding of color cliques. Further, based on the analysis of the proof of the theorem of Germeyer and Vatel, it is shown that the function of win of a group of players must be continuous. The consequence of this is the exclusion of cases of using discrete (in particular, integer) resources.
1. Bublik N.G. Logiko-lingvisticheskoye modelirovaniye v voyennykh sistemnykh issledovaniyakh / N.G. Bublik. V.E. Evstigneyev. V.I. Novoseltsev. A.I. Rog. E.K. Suvorov. B.V. Tarasov. — M. : Voyennoye izdatelstvo. — 1988. — 232 p.
2. Menshikh V.V. Strukturnaya adaptatsiya sistem upravleniya / V.V. Menshikh. V.V. Sysoyev. — M. : Radiotekhnika. — 2002. — 150 s.
3. Germeyer Yu.B. Igry s neprotivopolozhnymi interesami / Yu.B. Ger-meyer. — M.: Nauka. 1976. — 326 p.
4. Novoseltsev V.I. Sistemnyy analiz: sovremennyye kontseptsii / V.I. Novoseltsev. — Voronezh: Izdatelstvo «Kvarta». 2003. — 360 p.
5. Novoseltsev V.I. Sistemnaya konfliktologiya. / V.I. Novoseltsev — Voronezh: Izdatelstvo «Kvarta». 2001. — 169 p.
6. Germeyer Yu.B. Igry s iyerarkhicheskim vektorom interesov. / Yu.B. Germeyer. I.A. Vatel. – Tekhnicheskaya kombinatorika. — 1974. — №3. — pp. 54-69.
7. Menshikh T.V. Otsenka parametrov igr s iyerarkhicheskim vektorom interesov / T.V. Menshikh // Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya «Matematicheskoye modelirovaniye i programmirovaniye». — 2018. — pp. 118-122.
8. Menshikh T.V. Ispolzovaniye metodov teorii igr v prikladnykh zadachakh / T.V. Menshikh // Aktualnyye voprosy ekspluatatsii sistem okhrany i zashchishchennykh telekommunikatsionnykh sistem. Materialy Vserossiyskaya nauchno-prakticheskaya konferentsiya. — Voronezh: Voronezhskiy institut MVD Rossii. — 2015. — pp. 140-142.
9. Nechetkiye mnozhestva v modelyakh upravleniya i iskusstvennom intellekte / Pod. red. D.A. Pospelova. — M.: Nauka. 1986 — 312 p.
10. Saati T. Prinyatiye resheniy. Metod analiza iyerarkhiy. / T. Saati. — M.: Radio i svyaz. 1993. — 278 p.
11. Emelichev V.A. Lektsii po teorii grafov / V.A. Emelichev. O.I. Mel-nikov. V.I. Sarvanov. R.I. Tyshkevich - M. : Knizhnyy dom "Libro-kom". 2009. – 392 p.
Keywords: games with non-opposite interests, nash equilibrium, structuralparametric model of the community, hierarchical structure of groups of players, the utility function of a group of players
For citation: Men'shikh T.V., Novoseltsev V.I. THE STUDY OF THE PROPERTIES OF COMMUNITIES OF PLAYERS AND FUNCTIONS OF WIN IN GAMES WITH NON-OPPOSING INTERESTS. Modeling, Optimization and Information Technology. 2018;6(4). URL: https://moit.vivt.ru/wp-content/uploads/2018/10/MenshikhNovoseltsev_4_18_1.pdf DOI: 10.26102/2310-6018/2018.23.4.027 (In Russ).
Published 31.12.2018