ДИСПЕРСИЯ ЧИСЛА ОТКАЗОВ В МОДЕЛЯХ ПРОЦЕССОВ ВОССТАНОВЛЕНИЯ ТЕХНИЧЕСКИХ И ИНФОРМАЦИОННЫХ СИСТЕМ. ОПТИМИЗАЦИОННЫЕ ЗАДАЧИ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

DISPERSION OF THE NUMBER OF FAILURES IN MODELS OF PROCESSES OF RESTORATION OF TECHNICAL AND INFORMATION SYSTEMS . OPTIMIZATION PROBLEMS

Vaynshteyn I.I.,  Vaynshteyn V.I. 

UDC 519.873, 004.056
DOI: 10.26102/2310-6018/2019.26.3

  • Abstract
  • List of references
  • About authors

In this work, for several models of recovery processes, dispersion formulas for the number of failures are obtained, depending both on the recovery functions of the considered model of the recovery process and on the recovery functions (average number of failures) of other models. Considering the formulas for the average and variance of the number of failures, the problem statements are given on the organization of the recovery process in which the minimum variance is achieved with a given limit on the average number of failures, or so that there is the smallest average number of failures with a given dispersion limit. The formulation tasks resemble Markowitz’s well-known task of forming a portfolio of securities, where the average makes sense of income, risk variance. The solution of the formulated problems is obtained for a simple recovery process with an exponential distribution of operating time, and for this case the Chebyshev inequality and the formula for the coefficient of variation are written. The developed mathematical apparatus is intended for use in the formulation and solution of various optimization problems of information and computer security, as well as in the operation of technical and information systems, software and hardware-software information protection when failures, threats of attacks, and security threats of a random nature occur.

1. Borovkov A.A. Teoriya veroyatnostey/ A.A. Borovkov. -M.: Librokom, -2009. -652 s.

2. Baykhel't F. Nadezhnost' i tekhnicheskoe obsluzhivanie. Matematicheskiy podkhod: per. s angl./ F. Baykhel't, P. Franken. -M.: Radio i svyaz', -1988. -392 s.

3. Vaynshteyn I.I. Protsessy i strategii vosstanovleniya s izmenyayushchimisya funktsiyami raspredeleniya v teorii nadezhnosti/ I.I. Vaynshteyn. -Krasnoyarsk: SFU, -2016. -189 s

4. Vaynshteyn I.I. O modelyakh protsessov vosstanovleniya v teorii nadezhnosti/ I.I. Vaynshteyn, V.I. Vaynshteyn, E.A. Veysov// Voprosy matematicheskogo analiza: sb. nauch. tr./red. V. I. Polovinkin. -IPTs KGTU. Krasnoyarsk. -2003. -V. 6. -S.78-84.

5. Vaynshteyn V.I. Chislennoe nakhozhdenie funktsii vosstanovleniya dlya odnoy modeli protsessa vosstanovleniya/ V.I. Vaynshteyn, E.A. Veysov, O.O Shmidt//Vychislitel'nye tekhnologii. -Novosibirsk. -2005. -№10. -S. 4-9.

6. Bulinskaya E.V. Asimptoticheskoe povedenie nekotorykh stokhasticheskikh sistem khraneniya/ E.V. Bulinskaya, A.I. Sokolova// Sovremennye problemy matematiki i mekhaniki, -2015. -C.37-62.

7. Vaynshteyn V.I. Funktsii vosstanovleniya pri raspredelenii narabotok elementov tekhnicheskikh sistem kak smes' n funktsiy raspredeleniya//Sovremennye naukoemkie tekhnologii, -Moskva. -2018. -№6. –S.44-49.

8. Markowits Harry M. Portfolio Selection // Journal of Finance. 1952. 7. № 1 pp. 71-91

9. Kasimov Yu.F. Osnovy teorii optimal'nogo portfelya tsennykh bumag/ Yu.F. Kasimov. M: Informatsionno-izdatel'skiy dom «Filin"», -1998. -144 s.

10. Babeshko L.O. Matematicheskoe modelirovanie finansovoy deyatel'nosti/ L.O. Kasimov. -M.: «Kio-Rus», -2013. -212 s.

Vaynshteyn Isaak Iosifovich
Candidate of Physical and Mathematical Sciences, Associate Professor
Email: isvain@mail.ru

Siberian Federal University

Krasnoyarsk, Russian Federation

Vaynshteyn Vital Isaakovich
Candidate of Physical and Mathematical Sciences, Associate Professor
Email: vit037@mail.ru

Siberian Federal University, Krasnoyarsk

Krasnoyarsk, Russian Federation

Keywords: distribution function, recovery process, recovery function, failure rate dispersion, failure rate dispersion

For citation: Vaynshteyn I.I., Vaynshteyn V.I. DISPERSION OF THE NUMBER OF FAILURES IN MODELS OF PROCESSES OF RESTORATION OF TECHNICAL AND INFORMATION SYSTEMS . OPTIMIZATION PROBLEMS. Modeling, Optimization and Information Technology. 2019;7(3). URL: https://moit.vivt.ru/wp-content/uploads/2019/09/VainshteinVainshtein_3_19_1.pdf DOI: 10.26102/2310-6018/2019.26.3 (In Russ).

687

Full text in PDF

Published 30.09.2019