Математическая модель стационарного переноса ионов соли в сечении канала при равновесии
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Mathematical model of salt ion stationary transport in the cross section of the channel at equilibrium

idChubyr N.O. idKovalenko A.V. idUrtenov M.K. Gudza I.V.  

UDC 519.87+004.421
DOI: 10.26102/2310-6018/2022.38.3.009

  • Abstract
  • List of references
  • About authors

The equilibrium at the interphase boundaries largely determines the transfer processes and therefore studying it is an important task. The paper proposes a mathematical model of the problem of salt ion stationary transfer at the onset of equilibrium, namely at zero current, in the cross section of the desalination channel formed by anion exchange and cation exchange membrane in the form of a boundary value problem for systems of Nernst-Planck and Poisson equations in the potentiostatic mode. A numerical and asymptotic solution of this boundary value problem is obtained. The numerical and asymptotic solutions are compared, and their coincidences were shown with good accuracy. The acquired asymptotic solution allows for an exhaustive analysis of the equilibrium state depending on the initial concentration, potential jump, and properties of ion-exchange membranes and helps to establish the basic transfer patterns. It is shown that the stationary state of salt ion transfer process through the channel section coincides with the equilibrium state. The location and dimensions of the spatial charge and electroneutrality regions are established. The dependence of the electric field strength and concentration on the potential jump and the boundary values for cation and anion concentrations is obtained. The results of the research can be used to determine the optimal operating modes of electrodialysis water purification devices.

1. Zabolockij V.I., Nikonenko V.V. Ion transfer in membranes. M.: Nauka; 1996. 392 p. (In Russ.).

2. Kwak R., Pham V.S., Lim K.M., Han J., Shear Flow of an Electrically Charged Fluid by Ion Concentration Polarization: Scaling Laws for Electroconvective Vortices. Phys. Rev. Lett. 2013;(10):114501.

3. Demekhin E.A., Nikitin N.V., and Shelistov V.S. Direct numerical simulation of lectrokinetic instability and transition to chaotic motion Fluids. Phys. 2013;25:122001.

4. Novikova L.A. Ion transfer and equilibrium in electromembrane systems with amino acid solutions. Voronezh, VGU; 2003. 22 p. (In Russ.).

5. Rubinstein I., Zaltzman B. Equilibrium Electroconvective Instability. Phys. Rev. Lett. 2015;(114):114502.

6. Urtenov M.H. Boundary value problems for systems of Nernst-Planck-Poisson equations (asymptotic expansions and related issues). Krasnodar: KubGU$ 1999. 124 p. (In Russ.).

7. Chubyr' N.O., Kovalenko A.V., Urtenov M.H. Two-dimensional mathematical models of binary electrolyte transfer in membrane systems (numerical and asymptotic analysis). Krasnodar: KubGTU; 2012. 132 p. (In Russ.).

8. Uzdenova A.M., Kovalenko A.V., Urtenov M.A.H. Mathematical models of electroconvection in electromembrane systems. Karachaevsk: KchGU; 2011. 154 p. (In Russ.).

9. Vasil'eva A.B., Butuzov V.F. Asymptotic methods in the theory of singular perturbations. M.: Vysshaja shkola; 1990. 209 p. (In Russ.).

10. Dulan Je., Miller Dzh., Shilders U. Uniform numerical methods for solving problems with a boundary layer. M.: Mir; 1983. 254 p. (In Russ.).

11. Babeshko V.A., Zabolockij V.I., Korzhenko N.M., Seidov R.R., Urtenov M.H. Theory of stationary transfer of ternary electrolyte in the one-dimensional case. Doklady RAN. 1997;355(4):488–497. (In Russ.).

12. Uzdenova A., Kovalenko A., Urtenov M., Nikonenko V. 1D mathematical modelling of non-stationary ion transfer in the diffusion layer adjacent to an ion-exchange membrane in galvanostatic mode. Membranes. 2018;8(3):84.

Chubyr Natalia Olegovna
Candidate of Physical and Mathematical Sciences Associate Professor

ORCID |

Kuban State University

Krasnodar, Russian Federation

Kovalenko Anna Vladimirovna
Doctor of Technical Sciences Associate Professor

ORCID |

Kuban State University

Krasnodar, Russian Federation

Urtenov Makhamet Khuseevich
Doctor of Physical and Mathematical Sciences Professor

ORCID |

Kuban State University

Krasnodar, Russian Federation

Gudza Inna Vladimirovna

Kuban State University

Krasnodar, Russian Federation

Keywords: small parameter, asymptotic solution, cross section of desalination channel, electromembrane systems, numerical solution, singularly perturbed problems

For citation: Chubyr N.O. Kovalenko A.V. Urtenov M.K. Gudza I.V. Mathematical model of salt ion stationary transport in the cross section of the channel at equilibrium. Modeling, Optimization and Information Technology. 2022;10(3). Available from: https://moitvivt.ru/ru/journal/pdf?id=1219 DOI: 10.26102/2310-6018/2022.38.3.009 .

284

Full text in PDF

Received 17.08.2022

Revised 06.09.2022

Accepted 12.09.2022

Published 12.09.2022