Правила применения разрушающей способности операторов генетического алгоритма в задаче структурно-параметрического синтеза имитационных моделей бизнес-процессов
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Application rules for destructive ability of genetic algorithm operators in the problem of structural and parametric synthesis of business process simulation models

idPetrosov D.A. idSurova N.Y. Polyakov A.V.  

UDC УДК 519.7
DOI: 10.26102/2310-6018/2023.43.4.013

  • Abstract
  • List of references
  • About authors

This study proposes the application rules for destructive ability of genetic algorithm operators in the problem of structural and parametric synthesis of business process simulation models. The aim of the research is to confirm the hypothesis that it is possible to influence the performance of a genetic algorithm by changing the operating parameters of its operators, which allows increasing the convergence of this evolutionary procedure and helps the intelligent algorithm overcome “bottlenecks”. The “bottleneck” of a genetic algorithm is understood as attenuation of the algorithm, finding the population at local extrema of the fitness function, etc. Based on this hypothesis, it is proposed to use an add-on in the form of an artificial neural network to intervene in the process of finding solutions as a control model. It is planned to simulate this process using the mathematical apparatus of Petri nets theory. When implementing such an approach to solving the problem, it is necessary to consider the influence of the destructive ability of operators on the behavior of the population and determine the order of actions that need to be performed to control the evolutionary search for solutions in the problem of structural and parametric synthesis of dynamic business process simulation models. The paper discusses examples of population states of a genetic algorithm as well as the results of applying the proposed rules for making adjustments to operator activities. The main operators that significantly influence the state of the population are considered: the selection operator, the crossing operator, and the mutation operator; the influence of the reduction operator was not regarded in this study.

1. Saprykina A.O. Setting the parameters of evolutionary operators of a genetic algorithm to increase the efficiency of searching for a solution to a problem. Sovremennye nauchnye issledovaniya i innovatsii = Modern scientific research and innovation. 2022;141(12):12–19. (In Russ.).

2. Chekanin V.A., Kulikova M.Yu. Adaptive setting of parameters of a genetic algorithm. Vestnik MGTU “Stankin” = Bulletin of MSTU “Stankin”. 2017;42(3):85–89. (In Russ.).

3. Golyshin A.E. Setting the parameters of a fuzzy controller using a genetic algorithm when controlling a dynamic object. Aktual'nye problemy aviatsii i kosmonavtiki = Current problems of aviation and astronautics. 2018;14(4):21–23. (In Russ.).

4. Shegai M.V., Popova N.N. Genetic algorithm for optimization of guiding trees. Vestnik Moskovskogo universiteta. Seriya 15: Vychislitel'naya matematika i kibernetika = Bulletin of Moscow University. Series 15: Computational mathematics and cybernetics. 2023;1:54–61. (In Russ.).

5. Sofronova E.A. Variational genetic algorithm and its application to traffic management in an urban environment. International Journal of Open Information Technologies. 2023;11(4):3–13. (In Russ.).

6. Drozin A.Yu. Genetic algorithm for constructing routes for performing work stages in a conveyor system. Sistemnyi administrator = System Administrator. 2023;246(5):94–95. (In Russ.).

7. Saprykina A.O. Evolutionary operators and the operating principle of the genetic algorithm. Sovremennye nauchnye issledovaniya i innovatsii = Modern scientific research and innovation. 2022;139(11):34–41. (In Russ.).

8. Denisov M.A., Sopov E.A. Genetic algorithm of conditional optimization for the design of informative features in classification problems. Sibirskii aerokosmicheskii zhurnal = Siberian Aerospace Journal. 2021;22(1):18–31. (In Russ.).

9. Shabanov A.S. Priority-based direct genetic algorithm for a logistics network. Internauka. 2022;244(21-5):39–42. (In Russ.).

10. Ignatiev V.V., Soloviev V.V. Optimization of parameters of an intelligent controller using a genetic algorithm for controlling an unstable nonlinear technical object. Aktual'nye nauchnye issledovaniya v sovremennom mire = Current scientific research in the modern world. 2021;80(12-11):76–83. (In Russ.).

11. Bova V.V., Leshchanov D.V. Modified algorithm for searching for patterns in high-dimensional data based on genetic optimization. Informatizatsiya i svyaz' = Informatization and communication. 2021;3:67–72. (In Russ.).

12. Zaginailo M.V., Fathi V.A. Evaluating the effectiveness of various methods of training artificial neural networks. Innovatsii. Nauka. Obrazovanie = Innovations. The science. Education. 2021;35:442–447. (In Russ.).

13. Makarov V.I. Optimization of software implementation of a genetic algorithm using parallel computing. Programmnaya inzheneriya = Software engineering. 2023;14(8):401–406. (In Russ.).

14. Polukhin P.V. Application of genetic algorithms to optimize the solution of filtering and forecasting problems in dynamic program testing systems. Vestnik Yugorskogo gosudarstvennogo universiteta = Bulletin of Ugra State University. 2022;67(4):120–132. (In Russ.).

15. Sergeev A.I., Krylova S.E., Shamaev S.Yu., Mamukov T.R. Parametric synthesis algorithms used in the design of flexible production systems based on computer modeling. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk = News of the Samara Scientific Center of the Russian Academy of Sciences. 2021;100(2):106–114. (In Russ.).

16. Petrosov D.A. Modeling artificial neural networks using the mathematical apparatus of Petri net theory. Perspektivy nauki = Perspectives of Science. 2020;135(12):92–95. (In Russ.).

17. Petrosov D.A., Zelenina A.N. Model of an artificial neural network for solving the problem of controlling a genetic algorithm using the mathematical apparatus of the theory of Petri nets. Modeling, Optimization and Information Technology. 2020;8(4). URL: https://moitvivt.ru/ru/journal/pdf?id=877. DOI: 10.26102/2310-6018/2020.31.4.031. (In Russ.).

18. Petrosov D.A. Simulation model of a controlled genetic algorithm based on Petri nets. Intellektual'nye sistemy v proizvodstve = Intelligent systems in production. 2019;17(1):63–70. (In Russ.).

Petrosov David Aregovich
Candidate of Science, Associate Professor

ORCID |

Financial University under the Government of the Russian Federation

Moscow, the Russian Federation

Surova Nadezhda Yurievna
Candidate of Economics, Associate Professor

ORCID |

Financial University under the Government of the Russian Federation

Moscow, the Russian Federation

Polyakov Andrey Vyacheslavovich

Financial University under the Government of the Russian Federation

Moscow, the Russian Federation

Keywords: genetic algorithm, genetic algorithm operators, artificial neural network, structural and parametric synthesis, simulation models, business processes

For citation: Petrosov D.A. Surova N.Y. Polyakov A.V. Application rules for destructive ability of genetic algorithm operators in the problem of structural and parametric synthesis of business process simulation models. Modeling, Optimization and Information Technology. 2023;11(4). Available from: https://moitvivt.ru/ru/journal/pdf?id=1463 DOI: 10.26102/2310-6018/2023.43.4.013 (In Russ).

106

Full text in PDF

Received 23.10.2023

Revised 01.11.2023

Accepted 15.11.2023

Published 15.11.2023