Разработка адаптивного экспоненциального алгоритма декодирования минимальной суммы
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Development of adaptive exponential min sum decoding algorithm

idZhang W., idMouhamad I., idSaklakov V.M.

UDC 007.3
DOI: 10.26102/2310-6018/2024.47.4.019

  • Abstract
  • List of references
  • About authors

This paper presents an optimized min sum (MS) decoding algorithm with low complexity and high decoding performance for LDPC short codes. The MS algorithm has low computational complexity and is simple to deploy. The MS decoding algorithm, while demonstrating a performance gap compared to the belief propagation (BP) and likelihood ratio BP (LLR-BP) decoding algorithms, shows significant potential for optimization. To improve the decoding performance of traditional MS algorithm, secondary external information is introduced into the control node (CNs) update operations of MS algorithm and optimized as adaptive exponential correction factor (AECF). The optimized MS algorithm is named as adaptive exponential exponential MS decoding algorithm (AEMS). The decoding efficiency of the AEMS algorithm for regular, irregular and LDPC codes of the Consultative Committee on Space Data Systems (CCSDS) was extensively tested, then the complexity of the AEMS algorithm was analyzed and compared with other decoding algorithms. The results show that the AEMS algorithm outperforms the offset MS (OMS) and normalized MS (NMS) algorithms in decoding performance, and outperforms the BP algorithm as the signal-to-noise ratio (SNR) gradually increases.

1. Gallager R. Low-density parity-check codes. IRE Transactions on Information Theory. 1962;8(1):21–28. https://doi.org/10.1109/TIT.1962.1057683

2. Sarvaghad-Moghaddam M., Ullah W., Jayakody D.N.K., Affes S. A New Construction of High Performance LDPC Matrices for Mobile Networks. Sensors. 2020;20(8). https://doi.org/10.3390/s20082300

3. Weijia Z., Jayakody D.N.K. On the competitiveness of LDPC codes in wireless. In: 2nd International Research Conference, SLTC, 29–30 September 2022, Padukka, Sri Lanka.

4. Nachmani E., Marciano E., Lugosch L., Gross W.J., Burshtein D., Be’ery Y. Deep Learning Methods for Improved Decoding of Linear Codes. IEEE Journal of Selected Topics in Signal Processing. 2018;12(1):119–131. https://doi.org/10.1109/JSTSP.2017.2788405

5. MacKay D.J.С., Neal R.M. Near Shannon Limit Performance of Low Density Parity Check Codes. Electronics Letters. 1997;33(6):457–458.

6. Fossorier M.P.С., Mihaljevic M., Imai H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Transactions on Communications. 1999;47(5):673–680. https://doi.org/10.1109/26.768759

7. Chen J., Fossorier M.P.C. Near optimum universal belief propagation based decoding of low-density parity check codes. IEEE Transactions on Communications. 2002;50(3):406–414. https://doi.org/10.1109/26.990903

8. Chen J., Fossorier M.P.C. Density evolution for two improved BP-Based decoding algorithms of LDPC codes. IEEE Communications Letters. 2002;6(5):208–210. https://doi.org/10.1109/4234.1001666

9. Zhao J., Zarkeshvari F., Banihashemi A.H. On implementation of min-sum algorithm and its modifications for decoding low-density Parity-check (LDPC) codes. IEEE Transactions on Communications. 2005;53(4):549–554. https://doi.org/10.1109/TCOMM.2004.836563

10. Roberts M.K., Mohanram S.S., Shanmugasundaram N. An Improved Low Complex Offset Min-Sum Based Decoding Algorithm for LDPC Codes. Mobile Networks and Applications. 2019;24(6):1848–1852. https://doi.org/10.1007/s11036-019-01392-7

11. Wu X., Jiang M., Zhao C. Decoding optimization for 5g ldpc codes by machine learning. IEEE Access. 2018;6:50179–50186. https://doi.org/10.1109/ACCESS.2018.2869374

12. Jadhav M.M., Pancholi A., Sapkal A.M. Analysis and implementation of soft decision decoding algorithm of ldpc. International Journal of Engineering Trends and Technology. 2013;4(6):2380–2384.

13. Lakshmi R., Tony T., Raju A.J. An analytical approach to the performance of Low Density Parity Check Codes. In: 2013 International Conference on Advanced Computing and Communication Systems, 19–21 December 2013, Coimbatore, India. IEEE; 2013. pp. 1–4. https://doi.org/10.1109/ICACCS.2013.6938732

14. Jiang M., Zhao C., Zhang L., Xu E. Adaptive offset min-sum algorithm for low-density parity check codes. IEEE Communications Letters. 2006;10(6):483–485. https://doi.org/10.1109/LCOMM.2006.1638623

15. CCSDS Historical Document "Short Block Length LDPC Codes for TC Synchronization and Channel Coding" CCSDS 231.1-O-1 (2015). URL: https://public.ccsds.org/Pubs/231x1o1s.pdf [Accessed 12th September 2024].

Zhang Weijia

ORCID |

Tomsk Polytechnic University
Tomsk Polytechnic University

Tomsk, Russian Federation

Mouhamad Ibrahem

ORCID |

Tomsk Polytechnic University
Tomsk Polytechnic University

Tomsk, Russian Federation

Saklakov Vasiliy Mikhailovich

ORCID |

Tomsk Polytechnic University

Tomsk, Russian Federation

Keywords: LDPC, adaptive exponential algorithm, min sum, low complexity, LLR-BP

For citation: Zhang W., Mouhamad I., Saklakov V.M. Development of adaptive exponential min sum decoding algorithm. Modeling, Optimization and Information Technology. 2024;12(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1725 DOI: 10.26102/2310-6018/2024.47.4.019 .

43

Full text in PDF

Received 21.10.2024

Revised 12.11.2024

Accepted 20.11.2024