РЕАЛИЗАЦИЯ В БАЗИСЕ ПЛИС РЕЛЯТОРНЫХ КОНТРОЛИРУЮЩИХ ОПРОСНЫХ УСТРОЙСТВ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

REALIZATION OF RELATIONAL INTERROGATORIES DEVICES FOR MONITORING IN FPGA BASIS

Panychev S.A.  

UDC 004.031.6
DOI: 10.26102/2310-6018/2019.27.4.008

  • Abstract
  • List of references
  • About authors

The devices of functional control and diagnostics of electronic systems for critical applications are subject to strict requirements for performance and hardware compatibility with the object of control. The ability to process diagnostic information in real time have relational monitoring devices, whose work is based on the execution of operations of ordinal logic. To date, the structures of several types of ordinal-logical relational devices for monitoring polling have been developed, but there are no examples of practical implementation of such devices using modern element base. In paper the modeling and testing of a relational device for registration of a single element in a binary vector with a controlled search priority is performed on the basis of Xilinx FPGA. The results of realization by FPGA and testing of a relational device for determining the value and address of an extreme element in a data array with a controlled search priority are also presented. The software package CAD FPGA Xilinx ISE is used to develop and simulate the operation of relational monitoring devices for polling discrete signals. Realization of models of relational functional elements in FPGA bases shows the possibility of manufacturing the device of functional control and diagnostics in the form of a system on chip, which allows to provide its software, information, circuit and interface compatibility with modern electronic systems, as well as operational reconfiguration of its internal structure in the process of functioning.

1. Shcherbakov N.S., Samkharadze T.G., Rybin V.M. Postroyeniye universal'noy vstroyennoy iyerarkhicheskoy sistemy diagnostirovaniya slozhnykh radioelektronnykh kompleksov [The construction of a universal built-in hierarchical system for diagnosing complex electronic complexes]. Pribory i sistemy. Upravleniye, kontrol', diagnostika. 2012;4:46-50. (In Russ)

2. Rusanov V.N., Kulikov S.V. Mnogofunktsional'naya samodiagnostiruyemaya bortovaya vychislitel'naya sistema dlya otvetstvennykh primeneniy [Multifunctional self-diagnostic on-board computer system for critical applications]. Aviakosmicheskoye priborostroyeniye. 2016;5:14-21. (In Russ)

3. Rusanov V.N., Kiselev A.Yu., Sil'yanov N.V. Samodiagnostiruyemaya trekhkanal'naya bortovaya vychislitel'naya sistema s rezervirovaniyem zameshcheniyem [Self-diagnosed three-channel on-board computer system with redundancy replacement]. Aviakosmicheskoye priborostroyeniye. 2015;3:23-31. (In Russ)

4. Hahn M., Elsner G. Advanced Integrated Control and Data Systems for Constellation Satellites. MAPLD International Conference. 2002:217-225.

5. Shelton C., Koopman P., Nace W. A Framework for Scalable Analysis and Design of System-Wide Graceful Degradation in Distributed Embedded Systems. Eighth IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2003). 2003:8.

6. Gaskarov D.V., Golinkevich T.A., Mozgalevskiy A.V. Prognozirovaniye tekhnicheskogo sostoyaniya i nadezhnosti radioelektronnoy apparatury [Prediction of the technical condition and reliability of electronic equipment]. Sov. Radio. 1974. (In Russ)

7. Lomakin M.I., Mironov A.N., Shestopalova O.L. Mnogomodel'naya obrabotka izmeritel'noy informatsii v intellektual'nykh sistemakh prognozirovaniya nadezhnosti kosmicheskikh sredstv [Multimodel processing of measuring information in intelligent systems for predicting the reliability of space assets]. Izmeritel'naya tekhnika. 2014;1:8-13. (In Russ)

8. Hanck S. Reconfigurable computing. The theory and practice of FPGA-based computation. Morgan Kaufmann Publ. 2007.

9. Gokhale M., Graham P. Reconfigurable Computing Accelerating Computation with Field Programmable Gate Arrays. Springer Publ. 2005.

10. Kalyayev I.A., Levin I.I., Semernikov Ye.A., Shmoylov V.I. Rekonfiguriruyemyye mul'tikonveyyernyye vychislitel'nyye struktury [Reconfigurable multi-pipeline computing structures]. Izd-vo YUNTS RAN. 2008. (In Russ)

11. Volgin L.I. Relyatornyye protsessory na osnove grafa Paskalya dlya adresno-rangovoy identifikatsii, selektsii i ranzhirovaniya analogovykh signalov [Relatory processors based on the Pascal graph for address-rank identification, selection and ranking of analog signals]. Povolzhskiy tekhnologicheskiy institut servisa. 2000. (In Russ)

12. Volgin L.I., Zarukin A.I. Razvitiye elementnogo bazisa relyatornoy skhemotekhniki [The development of the elemental basis of relational circuitry]. Datchiki i sistemy. 2002;3. (In Russ)

13. Volgin L.I. Kon"yunktivno-diz"yunktivnyy relyator [Conjunctive Disjunctive Relator]. Patent RF 2143730. 1999. (In Russ)

14. Samoylenko A.P., Samoylenko I.A., Yatsko F.G. Ustroystvo peremennogo prioriteta [Variable priority device]. Patent SU 1383353. 1988. (In Russ)

15. Samoylenko A.P., Usenko O.A. Sposob tsentralizovannogo kontrolya N ob"yektov [The method of centralized control of N objects]. Patent 2198418 RU. 2003. (In Russ)

16. Samoilenko A.P., Panychev A.I., Panychev S.A. Sintez sistemy avtomaticheskogo kontrolya rabotosposobnosti bortovogo radioelektronnogo kompleksa [Synthesis of the automatic control system of the on-board radio electronic complex.] Izvestiya SFedU. Tekhnicheskie nauki. , 2015, No.11 (172). pp. 166-177. (In Russ)

17. Samoylenko A.P., Panychev A.I., Panychev S.A. Sintez kontrollera vneshnikh preryvaniy s dinamicheski izmenyayemym prioritetom [Synthesis of an external interrupt controller with dynamically changing priority]. Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh system. 2016;III: 212-219. (In Russ)

18. Samoilenko A.P., Panychev A.I., Panychev S.A. Statistical Diagnostics of Irreversible Avionics As a Controlled Random Process. 2016 IEEE International Siberian Conference on Control and Communications (SIBCON). DOI: 10.1109/SIBCON.2016.7391722.

19. Panychev S., Guzik V., Samoylenko A., Panychev A. The prerequisites of forming a risk management system in the design of facilities space application. MATEC Web of Conferences 102, 01030 (2017) V International Forum for Young Scientists "Space Engineering". DOI: 10.1051/matecconf/201710201030.

20. Panychev S.A. Bezetalonnyy sposob kontrolya rabotosposobnosti bortovoy vychislitel'noy sistemy v konstruktive kontseptsii IMA [Way of without-ethalon control of on-board computer system operability according to IMA conception]. Modeling, Optimization and Information Technology. 2018;6(1). Available from: https://moit.vivt.ru/wpcontent/uploads/2018/01/Panichev_1_1_18.pdf (In Russ)

Panychev Sergey Andreevich

Email: rocky61rus@yandex.ru

Federal State Autonomous Educational Institution of Higher Education "Southern Federal University", Institute of Computer Technologies and Information Security

Taganrog, Russian Federation

Keywords: fpga, functional diagnostics, automatic control, ordinal logic, embedded device, reconfiguring

For citation: Panychev S.A. REALIZATION OF RELATIONAL INTERROGATORIES DEVICES FOR MONITORING IN FPGA BASIS. Modeling, Optimization and Information Technology. 2019;7(4). Available from: https://moit.vivt.ru/wp-content/uploads/2019/11/Panychev_4_19_1.pdf DOI: 10.26102/2310-6018/2019.27.4.008 (In Russ).

442

Full text in PDF