Управление распределенными энергетическими системами на основе методов оптимизации и экспертных подходов
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Management of distributed energy systems on the basis of optimization methods and expert approaches

Pitolin M.V.   Preobrazhensky Y.P.  

UDC 517.977
DOI: 10.26102/2310-6018/2020.28.1.031

  • Abstract
  • List of references
  • About authors

Currently, there is a development of various methods and approaches related to the management of distributed energy systems. Using them requires the collection of a large amount of information. When using rating assessments of the functioning of energy systems, a number of problems arise. In managing the resource efficiency of a distributed energy system, the issue of making a rational decision based on the use of information from two sources is essential: a formalized solution to the problem using optimization modeling and expert evaluation of its results. The need to combine such information is determined by the nature of the multi-criteria choice of resource support in the case of taking into account the set of monitored performance indicators of the distributed energy system in this task. Moreover, in most cases, solving the resource efficiency problem by one criterion reduces to a linear programming problem with continuous or integer variables. This paper shows how the assessment of the effectiveness of distributed energy systems is formed. An optimization model of the problem is developed and procedures for the expert evaluation of managerial decisions are formed. The results of the presented work are useful for managing complex distributed energy systems.

1. Jamil F. On the Electricity Shortage, Price and Electricity Theft Nexus. Energy Policy. 2013;54:267-72.

2. Con Edison (ConEd). 2013. «Demand Management Incentives». http://www.coned.com/energyefficiency/demand_ management_incentives.asp.

3. Energy Storage Association (ESA). Community Energy Storage. 2014. http://energystorage.org/energy-storage/ technology-applications/community-energy storage.

4. Wood E. Princeton University's Microgrid: How to Partner, Not Part from the Grid. 2014. Microgrid Knowledge. http://microgridknowledge.com/princeton-universitys-microgridpartner-part-central-grid/.

5. Groefsema H., van Beest N.R.T.P. Design-time compliance of service compositions in dynamic service environments. Int. Conf. on Service Oriented Computing & Applications. 2015:108-115.

6. Groefsema H.: Business Process Variability: A Study into Process Management and Verification. PhD thesis. 2016.

7. Object Management Group. Business Process Model and Notation, version 2.0. http://www.omg.org/spec/BPMN/2.0/, last accessed 2019/02/10.

8. Weber I., Xu X., Riveret R., Governatori G., Ponomarev A. Mendling J. Untrusted Business Process Monitoring and Execution Using Blockchain. BPM 2016, LNCS 9850. 2016:329- 347.

9. Bertone G., Deisenroth M. P., Kim J. S., Liem S., de Austri R. R. Welling M.. Accel-erating the BSM Interpretation of LHC Data with Machine Learning. arXiv preprint arXiv:2016;1611.02704.

10. Albert S. Lutakamale, Shubi Kaijage. Wildfire Monitoring and Detection System Using Wireless Sensor Network: A Case Study of Tanzania. Wireless Sensor Network. 2017;9:274-289.

11. Odu G.O., Charles-Owaba O.E. «Review of Multi-criteria Optimization Methods – Theory and Applications». IOSR Journal of Engineering (IOSRJEN). 2013;3:1-14.

12. Sorokin S.O. Optimization modeling of the functioning of the system of homogeneous objects in a multidimensional digital environment. Modeling, optimization and information technologies. 2018;6(3):153-164. Доступно по: https://moit.vivt.ru/wpcontent/uploads/2018/09/Issue_3(22)_2018.pdf.

13. Orlova D.E. Stability of solutions in ensuring the functioning of organizational and technical systems. Modeling, optimization and information technologies. 2018;6(1):325- 336. Доступно по: http://moit.vivt.ru/wp-content/uploads/2018/01/Orlova_1_2_18.pdf.

14. Pekka Neittaanmki, Sergey, Repin and Tero Tuovinen (Eds.). Mathematical Modeling and Optimization of Complex Structures; Series: Computational Methods in Applied Sciences. Springer International Publishing AG. Switzerland. 2016.

15. Rios L.M. and Sahinidis N.V. Derivative-free optimization: a review of algorithms and comparison of software implementations. Journal of Global Optimization. 2013;54:1247- 1293.

Pitolin Mikhail Vladimirovich
Candidate of Technical Sciences, Associate Professor
Email: pmv_m@mail.ru

Voronezh Institute of the Ministry of Internal Affairs of the Russian Federation

Voronezh, Russian Federation

Preobrazhensky Yury Petrovich
Candidate of Technical Sciences, Associate Professor
Email: petrovich@vivt.ru

Voronezh Institute of High Technologies

Voronezh, Russian Federation

Keywords: distributed energy system, optimization, expert assessment, decision making, system analysis

For citation: Pitolin M.V. Preobrazhensky Y.P. Management of distributed energy systems on the basis of optimization methods and expert approaches. Modeling, Optimization and Information Technology. 2020;8(1). Available from: https://moit.vivt.ru/wp-content/uploads/2020/02/PitolinPreobrazhenskiyUP_1_20_1.pdf DOI: 10.26102/2310-6018/2020.28.1.031 (In Russ).

786

Full text in PDF