Современное состояние и тенденции в области исследований и разработок неонатальных инкубаторов
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
cетевое издание
issn 2310-6018

Современное состояние и тенденции в области исследований и разработок неонатальных инкубаторов

idФролов С.В. idКоробов А.А. idСавинова К.С. idПотлов А.Ю.

УДК 616-053.32
DOI: 10.26102/2310-6018/2023.43.4.016

  • Аннотация
  • Список литературы
  • Об авторах

Описана история создания и развития конструкций неонатальных инкубаторов. Рассмотрена обобщенная конструкция современного неонатального инкубатора и схемы циркуляции воздушных потоков, включая движение потоков в инкубаторах с двойными стенками. Дана классификация неонатальных инкубаторов. Приведен 51 производитель современных неонатальных инкубаторов из 17 стран с указанием адресов веб-страниц, на которых размещена информация о выпускаемых медицинских изделиях. Проведен анализ работ, связанных с модельными исследованиями тепломассообменных процессов в неонатальных инкубаторах с учетом терморегуляции ребенка, его 3D-модели, циркуляции воздушной среды, конвективного, лучистого и кондуктивного теплообмена. Показано, что для численного моделирования используются современные пакеты для вычислительной гидро-, аэро- и термодинамики. Численные модельные исследования сочетаются с физическим моделированием. Движение воздушных потоков анализируется с помощью видеокамер. Показано применение для задач исследования инкубаторов неонатальных фантомов, которые имеют анатомическое сходство с новорожденным ребенком и изготавливаются на основе аддитивных технологий. Имитация процесса терморегуляции производится за счет электрических нагревателей, датчиков температуры и систем управления на базе микроконтроллеров. Приведен обзор методов мониторинга параметров организма ребенка, помещенного в неонатальный инкубатор. Показано преимущество методов бесконтактного мониторинга с использованием видеокамер и термометрии. Рассмотрены современные системы управления неонатальными инкубаторами. Показано, что основным алгоритмом управления является ПИД-закон регулирования. Также представлены исследования по применению нечеткого управления и различных видов адаптивного управления. Установлено, что конструкции неонатальных инкубаторов требуют совершенствования системы защиты от шума, электромагнитного излучения, инфекций, контроля воздушной среды на наличие вредных примесей. Показаны возможные направления работ по повышению эффективности поддержания подходящих для новорожденных условий окружающей среды в неонатальных инкубаторах.

1. Nearly 30 million sick and premature newborns in dire need of treatment every year. URL: https://www.who.int/news/item/13-12-2018-nearly-30-million-sick-and-premature-newborns-in-dire-need-of-treatment-every-year (дата обращения: 05.11.2023).

2. Ohuma E.O., Moller A.B., Bradley E., Chakwera S., Hussain-Alkhateeb L., Lewin A., Okwaraji Y.B., Mahanani W.R., Johansson E.W., Lavin T., Fernandez D.E., Domínguez G.G., de Costa A., Cresswell J.A., Krasevec J., Lawn J.E., Blencowe H., Requejo J., Moran A.C. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet. 2023;402(10409):1261–1271. URL: https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(23)00878-4.pdf. DOI: 10.1016/S0140-6736(23)00878-4 (дата обращения: 05.11.2023).

3. Webster J.G. Encyclopedia of medical devices & instrumentation. 2nd ed., volume 4 Wiley-Interscience; 2006. P. 144–146.

4. Infant Incubator Market by Product, Application, and End User: Global Opportunity Analysis and Industry Forecast, 2021–2030. URL: https://www.researchandmarkets.com/reports/5561176/infant-incubator-market-by-product-application (дата обращения: 05.11.2023).

5. Yeler O., Koseoglu M. Performance prediction modeling of a premature baby incubator having modular thermoelectric heat pump system. Applied Thermal Engineering. 2021;182:116036. DOI: 10.1016/j.applthermaleng.2020.116036.

6. Kapen, T., Anero G., Mohamadou Y., D. Jauspin, F. Momo. An energy efficient neonatal incubator: mathematical modeling and prototyping. Health and Technology. 2019;(9):57–63. DOI: 10.1007/s12553-018-0253-3.

7. Hadj Ali J.El., Feki E., Zermani M.A., de Prada C., Mami A., Incubator system identification of humidity and temperature: Comparison between two identification environments. 2018 9th International Renewable Energy Congress (IREC). 2018:1–6. DOI: 10.1109/IREC.2018.8362529.

8. Zermani M.A., Feki E., Mami A. Building simulation model of infant-incubator system with decoupling predictive controller. IRBM. 2014;35(4):189–201. URL: https://www.sciencedirect.com/science/article/abs/pii/S195903181400075X. DOI: 10.1016/j.irbm.2014.07.001 (дата обращения: 05.11.2023).

9. Pereira C.B., Heimann K., Czaplik M., Blazek V., Venema B., Leonhardt S. Thermoregulation in premature infants: A mathematical model. Journal of Thermal Biology. 2016;62(B):159–169. DOI: 10.1016/j.jtherbio.2016.06.021 (дата обращения: 05.11.2023).

10. Abbas A.K., Leonhardt S. System Identification of Neonatal Incubator based on Adaptive ARMAX Technique. 4th European Conference of the International Federation for Medical and Biological Engineering. Vol. 62. Springer Berlin Heidelberg; 2009. 2515–2519 p. URL: https://link.springer.com/chapter/10.1007/978-3-540-89208-3_603. DOI: 10.1007/978-3-540-89208-3_603 (дата обращения: 05.11.2023).

11. Kim Y.H., Kwon C.H., Yoo S.C. Experimental and numerical studies on convective heat transfer in a neonatal incubator. Med. Biol. Eng. Comput. 2002;(40):114–121 DOI: 10.1007/BF02347704.

12. Casado A.R., Larrodé-Díaz M., Fernandez Zacarias F.F., Molina R.H. Experimental and computational model for a neonatal incubator with thermoelectric conditioning system. Energies. 2021;14(17):5278. URL: https://www.mdpi.com/1996-1073/14/17/5278. DOI: 10.3390/en14175278. (дата обращения: 05.11.2023).

13. Fraguela A., Matlalcuatzi F.D., Ramos A.M. Mathematical modelling of thermoregulation processes for premature infants in closed convectively heated incubators. Computers in Biology and Medicine. 2015;(57):159–172, URL: https://www.sciencedirect.com/science/article/pii/S0010482514003412. DOI: 10.1016/j.compbiomed.2014.11.021 (дата обращения: 05.11.2023).

14. Ginalski M.K., Nowak A.J., Wrobel L.C. A combined study of heat and mass transfer in a double-walled infant incubator. Medical Engineering & Physics. 2007:29. URL: https://www.academia.edu/52810133/A_combined_study_of_heat_and_mass_transfer_in_a_double_walled_infant_incubator.

15. Hannouch A., Habchi C., Lemenand T., Khoury K., Numerical evaluation of the convective and radiative heat transfer coefficients for preterm neonate body segments inside an incubator. Building and Environment. 2020;(183)107085. URL: https://www.sciencedirect.com/science/article/pii/S0360132320304613. DOI: 10.1016/j.buildenv.2020.107085 (дата обращения: 05.11.2023).

16. Delanaud S., Decima P., Pelletier A., Libert J., Stephan-Blanchard E., Bach V., Tourneux P., Additional double wall roof in single-wall, closed, convective incubators: Impact on body heat loss from premature infants and optimal adjustment of the incubator air temperature. Medical Engineering & Physics. 2016;38(9):922–928. URL: https://www.sciencedirect.com/science/article/abs/pii/S1350453316301072?via%3Dihub. DOI: 10.1016/j.medengphy.2016.05.010 (дата обращения: 05.11.2023).

17. Baghel D.K., Sinha S.L., Dewangan S.K. SST K-ω based air flow and heat transfer assessment in an infant incubator. Journal of Computational & Applied Research in Mechanical Engineering. 2023;12(2):161–175. URL: https://jcarme.sru.ac.ir/article_1780_931d07becc32d3c305e1e9c37acec0d7.pdf. DOI: 10.22061/jcarme.2022.7590.2010 (дата обращения: 05.11.2023).

18. Silva A.B., Laszczyk J., Wrobel L.C., Ribeiro F.L., Nowak A.J. A thermoregulation model for hypothermic treatment of neonates. Med Eng Phys. 2016;38(9):988–998. URL: https://www.sciencedirect.com/science/article/abs/pii/S1350453316301321?via%3Dihub. DOI: 10.1016/j.medengphy.2016.06.018 (дата обращения: 05.11.2023).

19. Delanaud S., Chahin Yassin F., Durand E., Tourneux P., Libert J-P. Can mathematical models of body heat exchanges accurately predict thermal stress in premature neonates? Applied Sciences. 2019;9(8):1541. URL: https://www.mdpi.com/2076-3417/9/8/1541. DOI: 10.3390/app9081541 (дата обращения: 05.11.2023).

20. Ginalski M.K., Nowak A.J. Computational model of selected transport processes in an infant incubator. XXI ICTAM. 2004 URL: http://fluid.ippt.gov.pl/ictam04/CD_ICTAM04/FM1/12409/abstract.pdf (дата обращения: 05.11.2023).

21. Ginalski M.K., Nowak A.J., Wrobel L.C. Modelling of heat and mass transfer processes in neonatology. Biomed. Mater. 2008;3(3). URL: https://iopscience.iop.org/article/10.1088/1748-6041/3/3/034113/pdf?casa_token=p1MujWa_ihEAAAAA:cdQZ9JIX2Om-RJPgSemDz5chwk-FO523dd9_cxkgzs_s3gkvBxXh1EyXoGFSWkpRa-S28ZiNrMT8zXiFU2U8Gt5HmZI. DOI: 10.1088/1748-6041/3/3/034113 (дата обращения: 05.11.2023).

22. Hannouch A., Lemenand T., Khoury K., Habchi C. Coupled radiative and convective heat losses from preterm infant inside an incubator with radiant heaters. VIII International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2019, June 2019, Sitges, Spain. URL: https://univ-angers.hal.science/hal-02568379/document (дата обращения: 05.11.2023).

23. Ige E.O., Dare A.A., Adeniyi K.A., Coker A.O., Murphy R.L., Glucksberg M., Gatchell D. Suitability of hood geometry for design of a PCM neonate incubator for resource-limited clinical applications. J Med Syst. 2021;45(3):32. DOI: 10.1007/s10916-021-01716-9.

24. Havenith G., Fiala D. Thermal indices and thermophysiological modeling for heat stress. Compr Physiol. 2015;6(1):255–302. URL: https://onlinelibrary.wiley.com/doi/10.1002/cphy.c140051. DOI: 10.1002/cphy.c140051 (дата обращения: 05.11.2023).

25. Sarman I., Bolin D., Holmér I., Tunell R. Assessment of thermal conditions in neonatal care: use of a manikin of premature baby size. Am J Perinatol. 1992;9(4):239–46. DOI: 10.1055/s-2007-994780.

26. Frankenberger R.T., Bussmann O., Nahm W., Konecny E. Model for simulation of heat loss by premature infants. Biomed Tech (Berl). 1998;43(5):137–43. URL: https://www.degruyter.com/document/doi/10.1515/bmte.1998.43.5.137/html. DOI: 10.1515/bmte.1998.43.5.137 (дата обращения: 05.11.2023).

27. Hannouch A., Habchi C., Metni N., Lemenand T. Thermal analysis of a 3D printed thermal manikin inside an infant incubator. International Journal of Thermal Sciences. 2023;183:(107826). URL: https://www.sciencedirect.com/science/article/pii/S1290072922003544. DOI: 10.1016/j.ijthermalsci.2022.107826 (дата обращения: 05.11.2023).

28. Lyra S., Voss F., Coenen A., Blase D., Aguirregomezcorta I.B., Uguz D.U., Leonhardt S., Antink C.H. A neonatal phantom for vital signs simulation. IEEE Trans Biomed Circuits Syst. 2021;15(5):949–959. URL: https://ieeexplore.ieee.org/document/9524494. DOI: 10.1109/tbcas.2021.3108066 (дата обращения: 05.11.2023).

29. Voss F., Lyra S., Blase D., Leonhardt S., Lüken M. A setup for camera-based detection of simulated pathological states using a neonatal phantom. Sensors (Basel). 2022;22(3):957. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838518/pdf/sensors-22-00957.pdf. DOI: 10.3390/s22030957 (дата обращения: 05.11.2023).

30. Akahane K., Kai M., Kusama T., Mitarai T., Ono K., Hada M., Ninomiya H., Kato Y. Development of neonate phantom for estimating medical exposure. IRPA-10 Proceedings of the 10th international congress of the International Radiation Protection Association on harmonization of radiation, human life and the ecosystem, (p. 1v). Japan Health Physics Society. Hiroshima, Japan), 14-19 May 2000. URL: https://www.irpa.net/irpa10/cdrom/00582.pdf (дата обращения: 05.11.2023).

31. Groenewald A., Groenewald W.A. In-house development of a neonatal chest simulation phantom. J Appl Clin Med Phys. 2014;15(3):4768. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711047/pdf/ACM2-15-282.pdf. DOI: 10.1120/jacmp.v15i3.4768 (дата обращения: 05.11.2023).

32. Larsson J., Liao P., Lundin P., Krite Svanberg E., Swartling J., Lewander Xu. M., Bood J., Andersson-Engels S. Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen-Laser-detector position considerations. J Biophotonics. 2018;11(3). DOI: 10.1002/jbio.201700097.

33. Samantha D., Wight E., Forbush R. Occupational radiation exposure of respiratory therapists during manual ventilation in the neonatal intensive care unit. Conference: American Association for Respiratory Care International Congress. 2018:63. DOI: 10.13140/RG.2.2.10650.88008.

34. Pacheco Tobo A.L., Li H., Chakravarty M., Konugolu Venkata Sekar S., Andersson-Engels S. Anthropomorphic optical phantom of the neonatal thorax: a key tool for pulmonary studies in preterm infants. J Biomed Opt. 2020;25(11):115001. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670093/pdf/JBO-025-115001.pdf. DOI: 10.1117/1.jbo.25.11.115001 (дата обращения: 05.11.2023).

35. Fujibuchi T. Investigation of a method for creating neonatal chest phantom using 3D printer. Journal of Physics: Conference Series, 1943. 2021;1943(1):012056. DOI: 10.1088/1742-6596/1943/1/012056.

36. Orr T.N., Winter J.D., Campbell G.J., Thompson R.T., Gelman N. A phantom material for MRI of the neonatal brain. 2017. URL: https://proceedings.cmbes.ca/index.php/proceedings/article/download/178/174.

37. Kozana A., Boursianis T., Kalaitzakis G., Raissaki M., Maris T.G. Neonatal brain: Fabrication of a tissue-mimicking phantom and optimization of clinical Τ1w and T2w MRI sequences at 1.5 T. Phys Med. 2018;55:88–97. DOI: 10.1016/j.ejmp.2018.10.022.

38. Clément J., Tomi-Tricot R., Malik S.J., Webb A., Hajnal J.V., Ipek Ö. Towards an integrated neonatal brain and cardiac examination capability at 7 T: electromagnetic field simulations and early phantom experiments using an 8-channel dipole array. MAGMA. 2022;35(5):765–778. URL: https://link.springer.com/content/pdf/10.1007/s10334-021-00988-z.pdf?pdf=button. DOI: 10.1007/s10334-021-00988-z (дата обращения: 05.11.2023).

39. Gatto M., Memoli G., Shaw A., Sadhoo N., Gelat P., Harris R.A. Three-dimensional printing (3DP) of neonatal head phantom for ultrasound: thermocouple embedding and simulation of bone. Med Eng Phys. 2012;34(7):929–937. DOI: 10.1016/j.medengphy.2011.10.012.

40. Tavakolian P., Todd R., Kosik I., Chamson-Reig A., Vasefi F., Lawrence K.St., Carson J.J.L. Development of a neonatal skull phantom for photoacoustic imaging. Proc. SPIE 8581, Photons Plus Ultrasound: Imaging and Sensing 2013. 2013;858146. DOI: 10.1117/12.2005372.

41. Ultrasound Neonatal Head Phantom (Normal Type). URL: https://www.kyotokagaku.com/products_data/us14a_catalog_en.pdf (дата обращения: 05.11.2023).

42. Mass P.N., Contento J.M., Opfermann J.D., Sumihara K., Kumthekar R.N., Berul C.I. An infant phantom for pediatric pericardial access and electrophysiology training. Heart Rhythm O2. 2022;3(3):295–301. DOI: 10.1016%2Fj.hroo.2022.02.010 (дата обращения: 05.11.2023).

43. Intubation phantom of a newborn baby. URL: https://www.southernbiological.com/intubation-phantom-of-a-newborn-baby/ (дата обращения: 05.11.2023).

44. PH-50 Newborn whole body phantom. URL: https://mediscientific.co.uk/product/newborn-whole-body-phantom/ (дата обращения: 05.11.2023).

45. Joseph R.A., Derstine S., Killian M. Ideal site for skin temperature probe placement on infants in the NICU: A review of literature. Advances in Neonatal Care. 2017;17:114–122. DOI: 10.1097/anc.0000000000000369.

46. Smith J. Methods and devices of temperature measurement in the neonate: A narrative review and practice recommendations. Newborn and Infant Nursing Reviews. 2014;14(2):64–71. DOI: 10.1053/j.nainr.2014.03.001.

47. Malloy-McDonald M.B. Skin care for high-risk neonates. Journal of Wound Ostomy & Continence Nursing. 1995;22(4):177-182. DOI: 10.1097/00152192-199507000-00008.

48. Chen W., Bouwstra S., Bambang S., Feijs L. Intelligent design for neonatal monitoring with wearable sensors. Intelligent and Biosensors. 2010;386–410. DOI: 10.5772/7031.

49. Marcatto J. de Oliveira, Santos A.S., Oliveira A.J.F., Costa A.C.L., Regne G.R.S., da Trindade R.E., Couto D.L., de Souza Noronha K.V.M., Andrade M.V. Medical adhesive-related skin injuries in the neonatology department of a teaching hospital. Nursing in Critical Care. 2021;27(4):583–588. DOI: 10.1111/nicc.12621.

50. Villarroel M., Guazzi A., Jorge J., Davis S., Watkinson P., Green G., Shenvi A., McCormick K., Tarassenko L. Continuous non-contact vital sign monitoring in neonatal intensive care unit. Healthc Technol Lett. 2014;23;1(3):87–91. URL: https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/htl.2014.0077. DOI: 10.1049/htl.2014.0077 (дата обращения: 05.11.2023).

51. Kolarovic R.S., Barsky B.E. Patent No. US6679830B2. Infant incubator with non-contact sensing and monitoring. 2001.

52. Hamada K., Hirakawa E., Asano H., Hayashi H., Mine T., Ichikawa T., Nagata Y. Infrared thermography with high accuracy in a neonatal incubator. Ann Biomed Eng. 2022;50(5):529–539. URL: https://link.springer.com/article/10.1007/s10439-022-02937-w. DOI: 10.1007/s10439-022-02937-w (дата обращения: 05.11.2023).

53. Cobos-Torres J.C., Abderrahim M., Martínez-Orgado J. Non-contact, simple neonatal monitoring by photoplethysmography. Sensors (Basel). 2018;18(12):4362. URL: https://www.mdpi.com/1424-8220/18/12/4362. DOI: 10.3390/s18124362 (дата обращения: 05.11.2023).

54. Muthuramalingam S. Security and health monitoring system of the baby in incubator. International Journal of Engineering and Advanced Technology. 2019;8(6). DOI: 10.35940/ijeat.F9353.088619.

55. van Gils R.H.J., Wauben L.S.G.L., Helder O.K. Body size measuring techniques enabling stress-free growth monitoring of extreme preterm infants inside incubators: A systematic review. PLoS One. 2022;17(4):e0267285. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267285. DOI: 10.1371/journal.pone.0267285 (дата обращения: 05.11.2023).

56. Pereira C.B., Yu X., Goos T., Reiss I., Orlikowsky T., Heimann K., Venema B., Blazek V., Leonhardt S., Teichmann D. Noncontact monitoring of respiratory rate in newborn infants using thermal imaging. IEEE Trans Biomed Eng. 2019;66(4):1105–1114. DOI: 10.1109/tbme.2018.2866878.

57. Abbas A.K., Leonhardt S. Intelligent neonatal monitoring based on a virtual thermal sensor. BMC Med Imaging. 2014;14:9. DOI: 10.1186/1471-2342-14-9 (дата обращения: 05.11.2023).

58. Abbas A.K., Jergus K., Heiman K., Orlikowsky T., Leonhardt S. Neonatal Infrared Thermography Imaging. In: Chen W., Oetomo S.B., Feijs L. (eds) Neonatal Monitoring Technologies: Design for Integrated Solutions, Book chapter: IGI Global; 2011. p. 84–124.

59. Voss F., Wolski L., Blasé D., Leonhardt S., Lüeken M. Live temperature calibration for neonatal thermography. Conference: IUPESM World Congress on Medical Physics and Biomedical Engineering 2022. Singapore. 2023.

60. Abbas A.K., Heimann K., Jergus K., Orlikowsky T., Leonhardt S. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed Eng Online. 2011;10:93. DOI: 10.1186/1475-925x-10-93 (дата обращения: 05.11.2023).

61. Voss F., Brechmann N., Lyra S., Rixen J., Leonhardt S., Hoog Antink C. Multi-modal body part segmentation of infants using deep learning. Biomed Eng Online. 2023;22(1):28. DOI: 10.1186/s12938-023-01092-0.

62. Lyra S., Mustafa A., Rixen J., Borik S., Lueken M., Leonhardt S. Conditional Generative Adversarial Networks for Data Augmentation of a Neonatal Image Dataset. Sensors (Basel). 2023;23(2):999. DOI: 10.3390/s23020999.

63. Lyra S., Rixen J., Heimann K., Karthik S., Joseph J., Jayaraman K., Orlikowsky T., Sivaprakasam M., Leonhardt S., Hoog Antink C. Camera fusion for real-time temperature monitoring of neonates using deep learning. Med Biol Eng Comput. 2022;60(6):1787–1800. DOI: 10.1007/s11517-022-02561-9 (дата обращения: 05.11.2023).

64. Földesy P., Zarándy Á., Szabó M. Reference free incremental deep learning model applied for camera-based respiration monitoring. IEEE Sensors Journal. 2021;21(2):2346–2352. DOI: 10.1109/JSEN.2020.3021337 (дата обращения: 05.11.2023).

65. Firmansyah R., Widodo A., Romadhon A.D., Hudha M.S., Saputra P.P.S., Lestari N.A. The prototype of infant incubator monitoring system based on the internet of things using NodeMCU ESP8266. 2019 J. Phys.: Conf. Ser. 1171 012015. DOI: 10.1088/1742-6596/1171/1/012015.

66. Çetin K., Ekici B. The effect of incubator cover on newborn vital signs: The design of repeated measurements in two separate groups with no control group. Children (Basel). 2023;14;10(7):1224. DOI: 10.3390/children10071224.

67. Burunkaya M., Yucel M. Measurement and control of an incubator temperature by using conventional methods and Fiber Bragg grating (FBG) based temperature sensors. J Med Syst. 2020;44(10):178. DOI: 10.1007/s10916-020-01650-2.

68. de Araújo J.M., de Menezes J.M., Moura de Albuquerque A.A., da Mota Almeida O., Ugulino de Araújo F.M. Assessment and certification of neonatal incubator sensors through an inferential neural network. Sensors (Basel). 2013;13(11):15613–15632. DOI: 10.3390/s131115613 (дата обращения: 05.11.2023).

69. Lima S., Tarbouriech F., Gouaisbaut, Filho M.A., García P. Analysis and experimental application of a dead-time compensator for input saturated processes with output time-varying delays. IET Control Theory and Applications. 2021;15(4):580–593. DOI: 10.1049/cth2.12063 (дата обращения: 05.11.2023).

70. Pereira R.D.O., Torrico B.C. New automatic tuning of multivariable PID controller applied to a neonatal incubator. 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI), Shenyang, China, 2015. 2015. p. 588–593. DOI: 10.1109/BMEI.2015.7401572.

71. Zimmer D.B., Inks A.A.P., Clark N., Sendi C. Design, control, and simulation of a neonatal incubator. Annu Int Conf IEEE Eng Med Biol Soc, 2020, Montreal, QC, Canada. 2020. p. 6018–6023. DOI: 10.1109/embc44109.2020.9175407.

72. Sobowale A.A., Olaniyan O.M., Adetan O., Adanigbo O., Esan. A., Olusesi A.T., Wahab W.B., Adewumi O.A. Implementation of a clinical decision support systems-based neonatal monitoring system framework. International Journal of Advanced Computer Science and Applications (IJACSA). 2020;11(9). URL: https://thesai.org/Publications/ViewPaper?Volume=11&Issue=9&Code=IJACSA&SerialNo=44. DOI: 10.14569/IJACSA.2020.0110944 (дата обращения: 05.11.2023).

73. Ele P., Mbede J.B., Ondoua, E. Parameters Modelling and Fuzzy Control System of Neonatal Incubators. 2009. SETIT 2009 5th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications, 22-26 March 2009, Tunisia.

74. Alimuddin A., Arafiyah R., Saraswati I., Alfanz R., Hasudungan P., Taufik T. Development and performance study of temperature and humidity regulator in baby incubator using Fuzzy-PID hybrid controller. Energies. 2021;14(20):6505. URL: https://www.mdpi.com/1996-1073/14/20/6505. DOI: 10.3390/en14206505 (дата обращения: 05.11.2023).

75. Alduwaish S., Alshakri O., Alamri R., Alfarieh R., Alqahtani S., Hameed K., Alomari A. Automated humidity control system for neonatal incubator. Journal of Physics: Conference Series 2071. 2021;2071:012029. DOI: 10.1088/1742-6596/2071/1/012029.

76. Ismail A., Noura H., Harmouch F., Harb Z. Design and control of a neonatal incubator using model-free control, 2021 29th Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 2021. 2021; p. 286–291. DOI: 10.1109/MED51440.2021.9480305.

77. Pinto J.A.D., Córdova E.Á., Lévano C.B.C. Design and implementation of a digital PID temperature controller for neonatal incubator ESVIN. Journal of Mechanics Engineering and Automation 5. 2015:167–172. DOI: 10.17265/2159-5275/2015.03.005 (дата обращения: 05.11.2023).

78. Abdiche M., Farges G., Delanaud S., Bach V., Villon P., Libert J.P. Humidity control tool for neonatal incubator. Med Biol Eng Comput. 1998;36(2):241–245. DOI: 10.1007/bf02510752.

79. Zermani M.A., Feki E., Mami A. Application of genetic algorithms in identification and control of a new system humidification inside a newborn incubator. International Conference on Communications, Computing and Control Applications (CCCA), Hammamet, Tunisia. 2011; p. 1–6, DOI: 10.1109/CCCA.2011.6031225.

80. Feki E., Zermani M.A., Mami A. Decoupling control approach for neonate incubator system. International Journal of Computer Applications. 2012;47(2):49–57. DOI: 10.5120/7164-9851.

81. Zermani M.A., Feki E., Mami A. Decoupling multivariable GPC with reference observation and feed-forward compensation method. Case Study: Neonate incubator. International Journal of Computer Science Issues. 2012;9(4):508–515. URL: https://ijcsi.org/papers/IJCSI-9-4-3-508-515.pdf (дата обращения: 05.11.2023).

82. Zermani M.A., Feki E., Mami A. Self-tuning weighting factor to decoupling control for incubator system. International Journal of Information Technology, Control and Automation (IJITCA). 2012;2(3):67–83. URL: https://zenodo.org/records/1404111. DOI: 10.5121/ijitca.2012.2306 (дата обращения: 05.11.2023).

83. Zermani M.A., Feki E., Mami A. GPC multivariable control applied to temperature and humidity neonate incubators. International Conference on Electrical Engineering and Software Applications, Hammamet, Tunisia. 2013; p. 1–6. DOI: 10.1109/ICEESA.2013.6578492.

84. Feki E., Zermani M.A., Mami A. GPC Temperature control of a simulation model infant-incubator and practice with Arduino Board. International Journal of Advanced Computer Science and Applications. 2017;8(6):46–59. DOI: 10.14569/IJACSA.2017.080607 (дата обращения: 05.11.2023).

85. Hadj A.J.E., Feki E., Mami A. Tuning PID using particle swarm optimization for controlling temperature of the infant incubator. International Journal of Computer Science and Network Security. 2020;20(3):174–182. URL: http://paper.ijcsns.org/07_book/202003/20200324.pdf (дата обращения: 05.11.2023).

86. Zermani M., Feki E., Mami A. Thermal control of the newborns using a cascade approach. Studies in Informatics and Control. 2023;32:119–130. DOI: 10.24846/v32i3y2023011.

87. Bhujbal R., Johnson H., Alag S., Ahire A. Smart ASHeR Infant incubator for accurate monitoring and control. Journal of Emerging Technologies and Innovative Research. 2021;8:531–536. URL: https://www.jetir.org/papers/JETIR2108318.pdf. DOI: 10.1729/Journal.27909 (дата обращения: 05.11.2023).

88. Samy K. Smart incubator for premature baby in an Iot applications. Journal of Semiconductor Devices and Circuits. 2023;9(2). URL: https://www.researchgate.net/publication/370659128_Smart_Incubator_for_Premature_Baby_In_An_Iot_Applications. DOI: 10.37591/JoSDC (дата обращения: 05.11.2023).

89. Inba M., Rajagopal S., Amala M., Kannagi V., Bharatha S.G., Chettiyar V.V., Jasmine V.A., Sanjeev K.N. Implementation of an intelligent neonatal monitoring system using Raspberry Pi. ECS Transactions. 2022;107(1):1001–1009. DOI: 10.1149/10701.1001ecst.

90. Cuervo R., Rodríguez-Lázaro M.A., Farré R., Gozal D., Solana G., Otero J. Low-cost and open-source neonatal incubator operated by an Arduino microcontroller. HardwareX. 2023;15:e00457. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393824/pdf/main.pdf. DOI: 10.1016/j.ohx.2023.e00457 (дата обращения: 05.11.2023).

91. Al-Sawaff Z., Kandemirli F. YahyaY. LabVIEW based temperature control system for neonatal incubator. Eurasian Journal of Science Engineering and Technology. 2020:20–26. URL: https://dergipark.org.tr/en/download/article-file/1067113 (дата обращения: 05.11.2023).

92. Al-Sawaff Z., Kandemirli F. Yahya Y. Neonatal incubator embedded temperature observation and monitoring using GSM. Journal of Engineering Research and Reports. 2019;4(1):1–9. DOI: 10.9734/jerr/2019/v4i116895.

93. Mahdi M.A., Gittaffa S.A., Issa A.H. Multiple fault detection and smart monitoring system based on machine learning classifiers for infant incubators using raspberry Pi 4. Journal Européen des Systèmes Automatisés. 2022;55(6):771–778. URL: https://www.iieta.org/journals/jesa/paper/10.18280/jesa.550609. DOI: 10.18280/jesa.550609 (дата обращения: 05.11.2023).

94. Chandrasekaran A., Amboiram P., Balakrishnan U., Abiramalatha T., Rao G., Jan S.M.S., Rajendran U.D., Sekar U., Thiruvengadam G., Ninan B. Disposable low-cost cardboard incubator for thermoregulation of stable preterm infant – a randomized controlled non-inferiority trial. EClinicalMedicine. 2020;31:100664. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846710/. DOI: 10.1016/j.eclinm.2020.100664 (дата обращения: 05.11.2023).

95. Zaylaa A.J., Rashid M., Shaib M., El Majzoub I. A handy preterm infant incubator for providing intensive care: Simulation, 3D printed prototype, and evaluation. J Healthc Eng. 2018;2018:8937985. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971329/. DOI: 10.1155%2F2018%2F8937985 (дата обращения: 05.11.2023).

96. Marchal A., Melchior M., Dufour A., Poisbeau P., Zores C., Kuhn P. Pain behavioural response to acoustic and light environmental changes in very preterm infants. Children (Basel). 2021:24;8(12):1081. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700556/. DOI: 10.3390/children8121081 (дата обращения: 05.11.2023).

97. Kaneshi Y., Ohta H., Morioka K., Hayasaka I., Uzuki Y., Akimoto T., Moriichi A., Nakagawa M., Oishi Y., Wakamatsu H., Honma N., Suma H., Sakashita R., Tsujimura S., Higuchi S., Shimokawara M., Cho K., Minakami H. Influence of light exposure at nighttime on sleep development and body growth of preterm infants. Sci Rep. 2016;6:21680. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753683/. DOI: 10.1038/srep21680 (дата обращения: 05.11.2023).

98. Antonucci R., Porcella A., Fanos V. The infant incubator in the neonatal intensive care unit: unresolved issues and future developments. J Perinat Med. 2009;37(6):587–98. DOI: 10.1515/jpm.2009.109.

99. Marik P.E., Fuller C., Levitov A., Moll E. Neonatal incubators: a toxic sound environment for the preterm infant? Pediatr Crit Care Med. 2012;13(6):685–689. URL: https://journals.lww.com/pccmjournal/fulltext/2012/11000/neonatal_incubators__a_toxic_sound_environment_for.11.aspx. DOI: 10.1097/pcc.0b013e31824ea2b7 (дата обращения: 05.11.2023).

100. Rodríguez-Montaño V.M., Beira-Jiménez J.L., Puyana-Romero V., Cueto-Ancela J.L., Hernández-Molina R., Fernández-Zacarías F. Acoustic conditioning of the neonatal incubator compartment: Improvement proposal. Front Pediatr. 2022;10:955553. URL: https://www.frontiersin.org/articles/10.3389/fped.2022.955553/full. DOI: 10.3389/fped.2022.955553 (дата обращения: 05.11.2023).

101. Jaschke Artur C., Bos Arend F. Concept and considerations of a medical device: the active noise cancelling incubator. Frontiers in Pediatrics. 2023:11. URL: https://www.frontiersin.org/articles/10.3389/fped.2023.1187815/full. DOI: 10.3389/fped.2023.1187815 (дата обращения: 05.11.2023).

102. Alomar S. The Impact of incubators on noise transmission produced by high-frequency oscillatory ventilation inside the neonatal intensive care unit. e-Journal of Neonatology Research. 2011:1. URL:https://www.researchgate.net/publication/258312400_The_Impact_of_Incubators_on_Noise_Transmission_Produced_by_High-Frequency_Oscillatory_Ventilation_Inside_the_Neonatal_Intensive_Care_Unit (дата обращения: 05.11.2023).

103. Restin T., Gaspar M., Bassler D., Kurtcuoglu V., Scholkmann F., Haslbeck F.B. Newborn incubators do not protect from high noise levels in the neonatal intensive care unit and are relevant noise sources by themselves. Children. 2021;8(8):704. URL: https://www.mdpi.com/2227-9067/8/8/704. DOI: 10.3390/children8080704 (дата обращения: 05.11.2023).

104. Bellieni C.V., Nardi V., Buonocore G., Di Fabio S., Pinto I., Verrotti A. Electromagnetic fields in neonatal incubators: the reasons for an alert. J Matern Fetal Neonatal Med. 2019;32(4):695–699. DOI: 10.1080/14767058.2017.1390559.

105. Fernández-Zacarías F., Beira-Jiménez J.L., Puyana-Romero V., Hernández-Molina R. Diagnosis of noise inside neonatal incubators under free-field conditions. Acoustics. 2023;5(2):354–366. URL: https://www.mdpi.com/2624-599X/5/2/21. DOI: 10.3390/acoustics5020021 (дата обращения: 05.11.2023).

106. Hutchinson G., Du L., Ahmad K. Incubator-based sound attenuation: active noise control in a simulated clinical environment. PLoS One. 2020;15(7):e0235287. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363066/. DOI: 10.1371%2Fjournal.pone.0235287 (дата обращения: 05.11.2023).

107. Hutchinson G.M., Wilson P.S., Sommerfeldt S., Ahmad K. Incubator-based active noise control device: comparison to ear covers and noise reduction zone quantification. Pediatr Res. 2023;94(5):1817–1823. URL: https://www.nature.com/articles/s41390-023-02708-w. DOI: 10.1038/s41390-023-02708-w (дата обращения: 05.11.2023).

108. Rodríguez-Balderrama I., Cisneros-Hernández J., Nieto, A., Ochoa-Correa E., Cavazos M. Measuring the quantity of light in neonatal care areas in a third-level hospital. Revista Medicina Universitaria. 2023:24. URL: https://www.researchgate.net/publication/366901165_Measuring_the_quantity_of_light_in_neonatal_care_areas_in_a_third-level_hospital. DOI: 10.24875/RMU.22000041 (дата обращения: 05.11.2023).

109. Monson B.B., Rock J., Cull M., Soloveychik V. Neonatal intensive care unit incubators reduce language and noise levels more than the womb. J Perinatol. 2020;40(4):600–606. DOI: 10.1038/s41372-020-0592-6.

110. Rodríguez R.G., Pattini A.E. Neonatal intensive care unit lighting: update and recommendations. Arch Argent Pediatr. 2016;114(4):361–367. URL: https://www.sap.org.ar/docs/publicaciones/archivosarg/2016/v114n4a15e.pdf. DOI: 10.5546/aap.2016.eng.361 (дата обращения: 05.11.2023).

111. Bellieni C.V., Nardi V., Buonocore G., Di Fabio S., Pinto I., Verrotti A. Electromagnetic fields in neonatal incubators: the reasons for an alert. J Matern Fetal Neonatal Med. 2019;32(4):695–699. DOI: 10.1080/14767058.2017.1390559.

112. Laurent F., Butin M. Staphylococcus capitis and NRCS-A clone: the story of an unrecognized pathogen in neonatal intensive care units. Clin Microbiol Infect. 2019;25(9):1081–1085. DOI: 10.1016/j.cmi.2019.03.009 (дата обращения: 05.11.2023).

113. Lange I., Edel B., Dawczynski K., Proquitté H., Pletz M.W., Kipp F., Stein C. Influence of the incubator as direct patient environment on bacterial colonization of neonates. Microorganisms. 2021;9(12):2533. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709377/. DOI: 10.3390%2Fmicroorganisms9122533 (дата обращения: 05.11.2023).

114. Jiang L., Ma J., Li F., Qin N. Association between incubator standards and newborn nosocomial infection with machine-learning prediction. Transl Pediatr. 2023;12(4):655–662. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167382/. DOI: 10.21037/tp-23-171 (дата обращения: 05.11.2023).

Фролов Сергей Владимирович
доктор технических наук, профессор
Email: sergej.frolov@gmail.com

WoS | Scopus | ORCID | РИНЦ |

Тамбовский государственный технический университет

Тамбов, Российская Федерация

Коробов Артём Андреевич
кандидат технических наук
Email: korobov1991@mail.ru

Scopus | ORCID | РИНЦ |

Тамбовский государственный технический университет

Тамбов, Российская Федерация

Савинова Кристина Сергеевна

Email: savinova.k94@mail.ru

Scopus | ORCID | РИНЦ |

Тамбовский государственный технический университет

Тамбов, Российская Федерация

Потлов Антон Юрьевич
кандидат технических наук, доцент
Email: zerner@yandex.ru

WoS | Scopus | ORCID | РИНЦ |

Тамбовский государственный технический университет

Тамбов, Российская Федерация

Ключевые слова: неонатальный инкубатор, неонатальный фантом, математическая модель, тепломассообмен, система мониторинга параметров организма, управление микроклиматом, экологическая неонатология

Для цитирования: Фролов С.В. Коробов А.А. Савинова К.С. Потлов А.Ю. Современное состояние и тенденции в области исследований и разработок неонатальных инкубаторов. Моделирование, оптимизация и информационные технологии. 2023;11(4). Доступно по: https://moitvivt.ru/ru/journal/pdf?id=1473 DOI: 10.26102/2310-6018/2023.43.4.016

573

Полный текст статьи в PDF

Поступила в редакцию 09.11.2023

Поступила после рецензирования 16.11.2023

Принята к публикации 29.11.2023

Опубликована 29.11.2023