Ключевые слова: бездорожье, грунтовые дороги, определение препятствий, датчики глубины, классификация бездорожья, наборы данных
Обзор и анализ технологий систем технического зрения, основанных на оптических датчиках для автоматического движения по грунтовым дорогам
УДК 004.421.2.
DOI: 10.26102/2310-6018/2025.49.2.045
Обзор посвящен технологиям технического зрения для автономного движения мобильного робота по грунтовым дорогам и анализу степени их технологической готовности. Выборка работ проводилась согласно методике «PRISMA» при помощи агрегатора научных статей «Google Scholar». На основе анализа работ из полученной выборки были выделены ключевые технологии, включающие в себя: наборы данных, технологии построения карты местности и технологии обнаружения дороги и препятствий. Они, в свою очередь, были поделены на подтехнологии, для каждой из которых был оценен уровень технологической готовности по представленной в работе шкале по новой предложенной интерпретации для шкалы TRL с учетом работы с грунтовыми дорогами, в частности, и со средами, сложно поддающимися исследованию в лабораторных условиях в общем случае. В результате исследования составлена статистика с выделением наиболее актуальных работ в области автономного движения по грунтовым дорогам. Также выведено, что основная тенденция развития навигации – получение и обработка комплексных данных; при анализе проходимости сосредотачиваются на извлечении и обработке геометрических признаков; существует острая необходимость в качественных наборах данных.
1. Zhang Yu., Carballo A., Yang H., Takeda K. Perception and Sensing for Autonomous Vehicles Under Adverse Weather Conditions: A Survey. ISPRS Journal of Photogrammetry and Remote Sensing. 2023;196:146–177. https://doi.org/10.1016/j.isprsjprs.2022.12.021
2. Feng D., Haase-Schütz Ch., Rosenbaum L., et al. Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges. IEEE Transactions on Intelligent Transportation Systems. 2021;22(3):1341–1360. https://doi.org/10.1109/TITS.2020.2972974
3. Biswas A., Reon M.A.O., Das P., et al. State-of-the-Art Review on Recent Advancements on Lateral Control of Autonomous Vehicles. IEEE Access. 2022;10:114759–114786. https://doi.org/10.1109/ACCESS.2022.3217213
4. Haque T.S., Rahman Md.A., Islam Md.R., et al. A Review on Driving Control Issues for Smart Electric Vehicles. IEEE Access. 2021;9:135440–135472. https://doi.org/10.1109/ACCESS.2021.3116353
5. Zablocki É., Ben-Younes H., Pérez P., Cord M. Explainability of Deep Vision-Based Autonomous Driving Systems: Review and Challenges. International Journal of Computer Vision. 2022;130(10):2425–2452. https://doi.org/10.1007/s11263-022-01657-x
6. Chen L., Li Yu., Huang Ch., et al. Milestones in Autonomous Driving and Intelligent Vehicles: Survey of Surveys. IEEE Transactions on Intelligent Vehicles. 2023;8(2):1046–1056. https://doi.org/10.1109/TIV.2022.3223131
7. Guastella D.C., Muscato G. Learning-Based Methods of Perception and Navigation for Ground Vehicles in Unstructured Environments: A Review. Sensors. 2020;21(1). https://doi.org/10.3390/s21010073
8. King Ch., Ries L., Langner J., Sax E. A Taxonomy and Survey on Validation Approaches for Automated Driving Systems. In: 2020 IEEE International Symposium on Systems Engineering (ISSE), 12 October – 12 November 2020, Vienna, Austria. IEEE; 2020. P. 1–8. https://doi.org/10.1109/ISSE49799.2020.9272219
9. Mihalj T., Li H., Babić D. Road Infrastructure Challenges Faced by Automated Driving: A Review. Applied Sciences. 2022;12(7). https://doi.org/10.3390/app12073477
10. Gholambosseinian A., Seitz J. Vehicle Classification in Intelligent Transport Systems: An Overview, Methods and Software Perspective. IEEE Open Journal of Intelligent Transportation Systems. 2021;2:173–194. https://doi.org/10.1109/OJITS.2021.3096756
11. Divakarla K.P., Emadi A., Razavi S., Habibi S., Yan F. A Review of Autonomous Vehicle Technology Landscape. International Journal of Electric and Hybrid Vehicles. 2019;11(4):320–345. https://doi.org/10.1504/IJEHV.2019.102877
12. Lopac N., Jurdana I., Brnelić A., Krljan T. Application of Laser Systems for Detection and Ranging in the Modern Road Transportation and Maritime Sector. Sensors. 2022;22(16). https://doi.org/10.3390/s22165946
13. Liu L., Lu S., Zhong R., et al. Computing Systems for Autonomous Driving: State of the Art and Challenges. IEEE Internet of Things Journal. 2021;8(8):6469–6486. https://doi.org/10.1109/JIOT.2020.3043716
14. Brunke L., Greeff M., Hall A.W., et al. Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning. Annual Review of Control, Robotics, and Autonomous Systems. 2022;5:411–444. https://doi.org/10.1146/annurev-control-042920-020211
15. Mankins J.C. Technology Readiness Level – A White Paper. ResearchGate. URL: https://www.researchgate.net/publication/247705707_Technology_Readiness_Level_-_A_White_Paper [Accessed 3rd April 2025].
16. Page M.J., McKenzie J.E., Bossuyt P.M., et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ. 2021;372. https://doi.org/10.1136/bmj.n71
17. Hu J.-W., Zheng B.-Yi., Wang C. A Survey on Multi-Sensor Fusion Based Obstacle Detection for Intelligent Ground Vehicles in Off-Road Environments. Frontiers of Information Technology & Electronic Engineering. 2020;21(5):675–692. https://doi.org/10.1631/FITEE.1900518
18. Geiger A., Lenz Ph., Urtasun R. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, 16–21 June 2012, Providence, RI, USA. IEEE; 2012. P. 3354–3361. https://doi.org/10.1109/CVPR.2012.6248074
19. Fayyad J., Jaradat M.A., Gruyer D., Najjaran H. Deep Learning Sensor Fusion for Autonomous Vehicle Perception and Localization: A Review. Sensors. 2020;20(15). https://doi.org/10.3390/s20154220
20. He K., Gkioxari G., Dollár P., Girshick R. Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), 22–29 October 2017, Venice, Italy. IEEE; 2017. P. 2980–2988. https://doi.org/10.1109/ICCV.2017.322
21. Yeong D.J., Velasco-Hernandez G., Barry J., Walsh J. Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review. Sensors. 2021;21(6). https://doi.org/10.3390/s21062140
22. Geiger A., Lenz P., Stiller Ch., Urtasun R. Vision Meets Robotics: The KITTI Dataset. The International Journal of Robotics Research. 2013;32(11):1231–1237. https://doi.org/10.1177/0278364913491297
23. He K., Zhang X., Ren Sh., Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June 2016, Las Vegas, NV, USA. IEEE; 2016. P. 770–778. https://doi.org/10.1109/CVPR.2016.90
24. Breiman L. Random Forests. Machine Learning. 2001;45:5–32. https://doi.org/10.1023/A:1010933404324
25. Hochreiter S., Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997;9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
26. LeCun Ya., Bengio Yo., Hinton G. Deep Learning. Nature. 2015;521:436–444. https://doi.org/10.1038/nature14539
27. Ronneberger O., Fischer Ph., Brox Th. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference: Proceedings: Part III, 05–09 October 2015, Munich, Germany. Cham: Springer; 2015. P. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
28. Shannon C.E. A Mathematical Theory of Communication. The Bell System Technical Journal. 1948;27(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
29. Bai Yu., Zhang B., Xu N., Zhou J., Shi J., Diao Zh. Vision-Based Navigation and Guidance for Agricultural Autonomous Vehicles and Robots: A Review. Computers and Electronics in Agriculture. 2023;205. https://doi.org/10.1016/j.compag.2022.107584
30. Shi J., Bai Yu., Diao Zh., Zhou J., Yao X., Zhang B. Row Detection BASED Navigation and Guidance for Agricultural Robots and Autonomous Vehicles in Row-Crop Fields: Methods and Applications. Agronomy. 2023;13(7). https://doi.org/10.3390/agronomy13071780
31. Bavle H., Sanchez-Lopez J.L., Cimarelli C., Tourani A., Voos H. From SLAM to Situational Awareness: Challenges and Survey. Sensors. 2023;23(10). https://doi.org/10.3390/s23104849
32. Zheng Sh., Wang J., Rizos Ch., Ding W., El-Mowafy A. Simultaneous Localization and Mapping (SLAM) for Autonomous Driving: Concept and Analysis. Remote Sensing. 2023;15(4). https://doi.org/10.3390/rs15041156
33. Carruth D.W., Walden C.T., Goodin Ch., Fuller S.C. Challenges in Low Infrastructure and Off-Road Automated Driving. In: 2022 Fifth International Conference on Connected and Autonomous Driving (MetroCAD), 28–29 April 2022, Detroit, MI, USA. IEEE; 2022. P. 13–20. https://doi.org/10.1109/MetroCAD56305.2022.00008
34. Shu Yo., Dong L., Liu J., Liu Ch., Wei W. Overview of Terrain Traversability Evaluation for Autonomous Robots. Journal of Field Robotics. 2024. https://doi.org/10.1002/rob.22461
35. Marin-Plaza P., Yagüe D., Royo F., et al. Project ARES: Driverless Transportation System. Challenges and Approaches in an Unstructured Road. Electronics. 2021;10(15). https://doi.org/10.3390/electronics10151753
36. Meshram A.T., Vanalkar A.V., Kalambe K.B., Badar A.M. Pesticide Spraying Robot for Precision Agriculture: A Categorical Literature Review and Future Trends. Journal of Field Robotics. 2021;39(2):153–171. https://doi.org/10.1002/rob.22043
37. Badrloo S., Varshosaz M., Pirasteh S., Li J. Image-Based Obstacle Detection Methods for the Safe Navigation of Unmanned Vehicles: A Review. Remote Sensing. 2022;14(15). https://doi.org/10.3390/rs14153824
38. Kolar P., Benavidez P., Jamshidi M. Survey of Datafusion Techniques for Laser and Vision Based Sensor Integration for Autonomous Navigation. Sensors. 2020;20(8). https://doi.org/10.3390/s20082180
39. Miao Q., Lv Yi., Huang M., Wang X., Wang F.-Yu. Parallel Learning: Overview and Perspective for Computational Learning Across Syn2Real and Sim2Real. IEEE/CAA Journal of Automatica Sinica. 2023;10(3):603–631. https://doi.org/10.1109/JAS.2023.123375
40. He M., Yue X., Zheng Yu., et al. State of the Art and Future Trends in Obstacle-Surmounting Unmanned Ground Vehicle Configuration and Dynamics. Robotica. 2023;41(9):2625–2647. https://doi.org/10.1017/S0263574723000577
41. Rateke Th., Justen K.A., Chiarella V.F., et al. Passive Vision Region-Based Road Detection: A Literature Review. ACM Computing Surveys. 2019;52(2). https://doi.org/10.1145/3311951
42. Velasco-Hernandez G., Yeong D.J., Barry J., Walsh J. Autonomous Driving Architectures, Perception and Data Fusion: A Review. In: 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), 03–05 September 2020, Cluj-Napoca, Romania. IEEE; 2020. P. 315–321. https://doi.org/10.1109/ICCP51029.2020.9266268
43. Xiao D., Dianati M., Geiger W.G., Woodman R. Review of Graph-Based Hazardous Event Detection Methods for Autonomous Driving Systems. IEEE Transactions on Intelligent Transportation Systems. 2023;24(5):4697–4715. https://doi.org/10.1109/TITS.2023.3240104
44. Janai J., Güney F., Behl A., Geiger A. Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art. Foundations and Trends® in Computer Graphics and Vision. 2020;12(1–3):1–308. https://doi.org/10.1561/0600000079
45. Ryu S., Won J., Chae H., Kim H.S., Seo T. Evaluation Criterion of Wheeled Mobile Robotic Platforms on Grounds: A Survey. International Journal of Precision Engineering and Manufacturing. 2024;25(3):675–686. https://doi.org/10.1007/s12541-023-00912-6
46. Cumbajin E., Rodrigues N., Costa P., et al. A Systematic Review on Deep Learning with CNNs Applied to Surface Defect Detection. Journal of Imaging. 2023;9(10). https://doi.org/10.3390/jimaging9100193
47. Liao Yi., Xie J., Geiger A. KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2023;45(3):3292–3310. https://doi.org/10.1109/TPAMI.2022.3179507
48. Cordts M., Omran M., Ramos S., et al. The Cityscapes Dataset for Semantic Urban Scene Understanding. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June 2016, Las Vegas, NV, USA. IEEE; 2016. P. 3213–3223. https://doi.org/10.1109/CVPR.2016.350
49. Neuhold G., Ollmann T., Bulò S.R., Kontschieder P. The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In: 2017 IEEE International Conference on Computer Vision (ICCV), 22–29 October 2017, Venice, Italy. IEEE; 2017. P. 5000–5009. https://doi.org/10.1109/ICCV.2017.534
50. Yu F., Chen H., Wang X., et al. BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13–19 June 2020, Seattle, WA, USA. IEEE; 2020. P. 2633–2642. https://doi.org/10.1109/CVPR42600.2020.00271
51. Caesar H., Bankiti V., Lang A.H., et al. nuScenes: A Multimodal Dataset for Autonomous Driving. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13–19 June 2020, Seattle, WA, USA. IEEE; 2020. P. 11618–11628. https://doi.org/10.1109/CVPR42600.2020.01164
52. Che E., Jung J., Olsen M.J. Object Recognition, Segmentation, and Classification of Mobile Laser Scanning Point Clouds: A State of the Art Review. Sensors. 2019;19(4). https://doi.org/10.3390/s19040810
53. Rathee M., Bačić B., Doborjeh M. Automated Road Defect and Anomaly Detection for Traffic Safety: A Systematic Review. Sensors. 2023;23(12). https://doi.org/10.3390/s23125656
54. Ly A.O., Akhloufi M. Learning to Drive by Imitation: An Overview of Deep Behavior Cloning Methods. IEEE Transactions on Intelligent Vehicles. 2021;6(2):195–209. https://doi.org/10.1109/TIV.2020.3002505
55. Razali M.R., Faudzi A.A.M., Shamsudin A.U. Visual Simultaneous Localization and Mapping: A Review. PERINTIS eJournal. 2022;12(1):23–34.
56. Yeong D.J., Barry J., Walsh J. A Review of Multi-Sensor Fusion System for Large Heavy Vehicles Off Road in Industrial Environments. In: 2020 31st Irish Signals and Systems Conference (ISSC), 11–12 June 2020, Letterkenny, Ireland. IEEE; 2020. P. 1–6. https://doi.org/10.1109/ISSC49989.2020.9180186
57. Hussain M., O’Nils M., Lundgren J., Mousavirad S.J. A Comprehensive Review on Deep Learning-Based Data Fusion. IEEE Access. 2024;12:180093–180124. https://doi.org/10.1109/ACCESS.2024.3508271
58. Alaba S.Yi., Gurbuz A.C., Ball J.E. Emerging Trends in Autonomous Vehicle Perception: Multimodal Fusion for 3D Object Detection. World Electric Vehicle Journal. 2024;15(1). https://doi.org/10.3390/wevj15010020
59. Pan H., Huang Sh., Yang J. Recent Advances in Robot Navigation via Large Language Models: A Review. ResearchGate. URL: https://doi.org/10.13140/RG.2.2.35284.41603 [Accessed 3rd April 2025].
60. Sharma S., Dabbiru L., Hannis T., et al. CaT: CAVS Traversability Dataset for Off-Road Autonomous Driving. IEEE Access. 2022;10:24759–24768. https://doi.org/10.1109/ACCESS.2022.3154419
61. Gresenz G., White J., Schmidt D.C. An Off-Road Terrain Dataset Including Images Labeled With Measures of Terrain Roughness. In: 2021 IEEE International Conference on Autonomous Systems (ICAS), 11–13 August 2021, Montreal, QC, Canada. IEEE; 2021. P. 1–5. https://doi.org/10.1109/ICAS49788.2021.9551147
62. Triest S., Sivaprakasam M., Wang S.J., Wang W., Johnson A.M., Scherer S. TartanDrive: A Large-Scale Dataset for Learning Off-Road Dynamics Models. In: 2022 International Conference on Robotics and Automation (ICRA), 23–27 May 2022, Philadelphia, PA, USA. IEEE; 2022. P. 2546–2552. https://doi.org/10.1109/ICRA46639.2022.9811648
63. Liu Q., Li Z., Yuan Sh., Zhu Yu., Li X. Review on Vehicle Detection Technology for Unmanned Ground Vehicles. Sensors. 2021;21(4). https://doi.org/10.3390/s21041354
64. Singh A., Kalaichelvi V., Karthikeyan R. A Survey on Vision Guided Robotic Systems with Intelligent Control Strategies for Autonomous Tasks. Cogent Engineering. 2022;9(1). https://doi.org/10.1080/23311916.2022.2050020
65. Abdelsalam A., Happonen A., Kärhä K., Kapitonov A., Porras J. Toward Autonomous Vehicles and Machinery in Mill Yards of the Forest Industry: Technologies and Proposals for Autonomous Vehicle Operations. IEEE Access. 2022;10:88234–88250. https://doi.org/10.1109/ACCESS.2022.3199691
66. Vrochidou E., Oustadakis D., Kefalas A., Papakostas G.A. Computer Vision in Self-Steering Tractors. Machines. 2022;10(2). https://doi.org/10.3390/machines10020129
67. Racinskis P., Arents J., Greitans M. Constructing Maps for Autonomous Robotics: An Introductory Conceptual Overview. Electronics. 2023;12(13). https://doi.org/10.3390/electronics12132925
68. Tourani A., Bavle H., Sanchez-Lopez J.L., Voos H. Visual SLAM: What Are the Current Trends and What to Expect? Sensors. 2022;22(23). https://doi.org/10.3390/s22239297
69. Chghaf M., Rodriguez S., Ouardi A.E. Camera, LiDAR and Multi-modal SLAM Systems for Autonomous Ground Vehicles: A Survey. Journal of Intelligent & Robotic Systems. 2022;105(1). https://doi.org/10.1007/s10846-022-01582-8
70. Alkendi Yu., Seneviratne L., Zweiri Ya. State of the Art in Vision-Based Localization Techniques for Autonomous Navigation Systems. IEEE Access. 2021;9:76847–76874. https://doi.org/10.1109/ACCESS.2021.3082778
71. Schuetz E., Flohr F.B. A Review of Trajectory Prediction Methods for the Vulnerable Road User. Robotics. 2024;13(1). https://doi.org/10.3390/robotics13010001
72. Cheng J., Zhang L., Chen Q., Hu X., Cai J. A Review of Visual SLAM Methods for Autonomous Driving Vehicles. Engineering Applications of Artificial Intelligence. 2022;114. https://doi.org/10.1016/j.engappai.2022.104992
73. Roriz R., Silva H., Dias F., Gomes T. A Survey on Data Compression Techniques for Automotive LiDAR Point Clouds. Sensors. 2024;24(10). https://doi.org/10.3390/s24103185
74. Chen L., Feng Ch., Ma Yu., Zhao Yi., Wang Ch. A Review of Rigid Point Cloud Registration Based on Deep Learning. Frontiers in Neurorobotics. 2024;17. https://doi.org/10.3389/fnbot.2023.1281332
75. Vougioukas S.G. Agricultural Robotics. Annual Review of Control, Robotics, and Autonomous Systems. 2019;2:365–392. https://doi.org/10.1146/annurev-control-053018-023617
76. Xie D., Chen L., Liu L., Chen L., Wang H. Actuators and Sensors for Application in Agricultural Robots: A Review. Machines. 2022;10(10). https://doi.org/10.3390/machines10100913
77. Benrabah M., Mousse Ch.O., Randriamiarintsoa E., Chapuis R., Aufrère R. A Review on Traversability Risk Assessments for Autonomous Ground Vehicles: Methods and Metrics. Sensors. 2024;24(6). https://doi.org/10.3390/s24061909
78. Lohar Sh., Zhu L., Young S., Graf P., Blanton M. Sensing Technology Survey for Obstacle Detection in Vegetation. Future Transportation. 2021;1(3):672–685. https://doi.org/10.3390/futuretransp1030036
79. Mendez E., Camacho J.P., Cabello J.A.E., Gómez-Espinosa A. Autonomous Navigation and Crop Row Detection in Vineyards Using Machine Vision with 2D Camera. Automation. 2023;4(4):309–326. https://doi.org/10.3390/automation4040018
80. Marti E., de Miguel M.A., Garcia F., Perez J. A Review of Sensor Technologies for Perception in Automated Driving. IEEE Intelligent Transportation Systems Magazine. 2019;11(4):94–108. https://doi.org/10.1109/MITS.2019.2907630
81. Beycimen S., Ignatyev D., Zolotas A. A Comprehensive Survey of Unmanned Ground Vehicle Terrain Traversability for Unstructured Environments and Sensor Technology Insights. Engineering Science and Technology, an International Journal. 2023;47. https://doi.org/10.1016/j.jestch.2023.101457
82. Kabir M.M., Jim J.R., Istenes Z. Terrain Detection and Segmentation for Autonomous Vehicle Navigation: A State-Of-The-Art Systematic Review. Information Fusion. 2025;113. https://doi.org/10.1016/j.inffus.2024.102644
83. Zhong Ch., Li B., Wu T. Off-Road Drivable Area Detection: A Learning-Based Approach Exploiting LiDAR Reflection Texture Information. Remote Sensing. 2023;15(1). https://doi.org/10.3390/rs15010027
84. Gomes T., Matias D., Campos A., Cunha L., Roriz R. A Survey on Ground Segmentation Methods for Automotive LiDAR Sensors. Sensors. 2023;23(2). https://doi.org/10.3390/s23020601
85. Liu R., Yandun F., Kantor G. Towards Over-Canopy Autonomous Navigation: Crop-Agnostic LiDAR-Based Crop-Row Detection in Arable Fields. arXiv. URL: https://doi.org/10.48550/arXiv.2403.17774 [Accessed 3rd April 2025].
86. Nahavandi S., Alizadehsani R., Nahavandi D., et al. A Comprehensive Review on Autonomous Navigation. ACM Computing Surveys. 2025;57(9). https://doi.org/10.1145/3727642
87. Yang L., Li P., Qian S., et al. Path Planning Technique for Mobile Robots: A Review. Machines. 2023;11(10). https://doi.org/10.3390/machines11100980
88. Balestrieri E., Daponte P., De Vito L., Lamonaca F. Sensors and Measurements for Unmanned Systems: An Overview. Sensors. 2021;21(4). https://doi.org/10.3390/s21041518
89. Islam F., Nabi M.M., Ball J.E. Off-Road Detection Analysis for Autonomous Ground Vehicles: A Review. Sensors. 2022;22(21). https://doi.org/10.3390/s22218463
90. Rateke T., von Wangenheim A. Passive Vision Road Obstacle Detection: A Literature Mapping. International Journal of Computers and Applications. 2022;44(4):376–395. https://doi.org/10.1080/1206212X.2020.1758877
91. Wijayathunga L., Rassau A., Chai D. Challenges and Solutions for Autonomous Ground Robot Scene Understanding and Navigation in Unstructured Outdoor Environments: A Review. Applied Sciences. 2023;13(17). https://doi.org/10.3390/app13179877
92. Cui Ya., Chen R., Chu W., et al. Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review. IEEE Transactions on Intelligent Transportation Systems. 2022;23(2):722–739. https://doi.org/10.1109/TITS.2020.3023541
93. Lee S.Ch., Nevatia R. Robust Camera Calibration Tool for Video Surveillance Camera in Urban Environment. In: CVPR 2011 Workshops, 20–25 June 2011, Colorado Springs, CO, USA. IEEE; 2011. P. 62–67. https://doi.org/10.1109/CVPRW.2011.5981777
94. Егорцев М.В., Диане С.К., Кац Н.Д. Алгоритмическое обеспечение системы внешнего наблюдения и маршрутизации автономных мобильных роботов. Russian Technological Journal. 2021;9(3):15–23. https://doi.org/10.32362/2500-316X-2021-9-3-15-23
95. Ferreira J.F., Portugal D., Andrada M.E., Machado P., Rocha R.P., Peixoto P. Sensing and Artificial Perception for Robots in Precision Forestry: A Survey. Robotics. 2023;12(5). https://doi.org/10.3390/robotics12050139
96. Wang L., Feng Yu., Wang Sh., Wei H. A Lightweight Approach to Understand Forest Roads for New Energy Vehicles. International Journal of Automotive Manufacturing and Materials. 2024;3(4). https://doi.org/10.53941/ijamm.2024.100022
97. Li X., Li Q., Yin Ch., Zhang J. Autonomous Navigation Technology for Low-Speed Small Unmanned Vehicle: An Overview. World Electric Vehicle Journal. 2022;13(9). https://doi.org/10.3390/wevj13090165
98. Guo X., Han J., Li J., et al. Water Hazard Detection: A 20-Year Review. Journal of Terramechanics. 2023;105:53–66. https://doi.org/10.1016/j.jterra.2022.11.002
99. Tan Zh., Zhang X., Teng Sh., Wang L., Gao F. A Review of Deep Learning-Based LiDAR and Camera Extrinsic Calibration. Sensors. 2024;24(12). https://doi.org/10.3390/s24123878
100. Belkin I.V., Abramenko A.A., Bezuglyi V.D., Yudin D.A. Localization of Mobile Robot in Prior 3D LiDAR Maps Using Stereo Image Sequence. Computer Optics. 2024;48(3):406–417. https://doi.org/10.18287/2412-6179-CO-1369
101. Wang T., Chen B., Zhang Zh., Li H., Zhang M. Applications of Machine Vision in Agricultural Robot Navigation: A Review. Computers and Electronics in Agriculture. 2022;198. https://doi.org/10.1016/j.compag.2022.107085
102. Mo Yu., Wu Ya., Yang X., Liu F., Liao Yu. Review the State-Of-The-Art Technologies of Semantic Segmentation Based on Deep Learning. Neurocomputing. 2022;493:626–646. https://doi.org/10.1016/j.neucom.2022.01.005
103. Kuutti S., Bowden R., Jin Ya., Barber Ph., Fallah S. A Survey of Deep Learning Applications to Autonomous Vehicle Control. IEEE Transactions on Intelligent Transportation Systems. 2021;22(2):712–733. https://doi.org/10.1109/TITS.2019.2962338
104. Rybczak M., Popowniak N., Lazarowska A. A Survey of Machine Learning Approaches for Mobile Robot Control. Robotics. 2024;13(1). https://doi.org/10.3390/robotics13010012
105. Zhao R., Li Yu., Fan Yu., Gao F., Tsukada M., Gao Zh. A Survey on Recent Advancements in Autonomous Driving Using Deep Reinforcement Learning: Applications, Challenges, and Solutions. IEEE Transactions on Intelligent Transportation Systems. 2024;25(12):19365–19398. https://doi.org/10.1109/TITS.2024.3452480
106. Tang Ch., Abbatematteo B., Hu J., Chandra R., Martín-Martín R., Stone P. Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes. Annual Review of Control, Robotics, and Autonomous Systems. 2025;8:153–188. https://doi.org/10.1146/annurev-control-030323-022510
107. Ren X., Huang B., Yin H. A Review of the Large-Scale Application of Autonomous Mobility of Agricultural Platform. Computers and Electronics in Agriculture. 2023;206. https://doi.org/10.1016/j.compag.2023.107628
108. Liu L., Liu H., Wang X., et al. Application of Path Planning and Tracking Control Technology in Mower Robots. Agronomy. 2024;14(11). https://doi.org/10.3390/agronomy14112473
109. Yao Zh., Zhao Ch., Zhang T. Agricultural Machinery Automatic Navigation Technology. iScience. 2024;27(2). https://doi.org/10.1016/j.isci.2023.108714
110. Рего Г.Э., Корзун Д.Ж., Щеголева Л.В. Проект «лесной робот»: концептуальная модель анализа движения мобильной робототехнической системы для лесовосстановления и рубок ухода. В сборнике: Перспективы и возможности использования цифровых технологий в науке, образовании и управлении: сборник материалов Всероссийской научно-практической конференции, 21–23 апреля 2022 года, Астрахань, Россия. Астрахань: Астраханский государственный университет имени В.Н. Татищева; 2022. С. 206–210.
111. Викторова А.П. Использование роботов в сельском хозяйстве. В сборнике: Исследования молодых ученых: материалы XVIII Международной научной конференции, 20–23 марта 2021 года, Казань, Россия. Казань: Молодой ученый; 2021. С. 6–9.
112. Xu R., Li Ch. A Review of High-Throughput Field Phenotyping Systems: Focusing on Ground Robots. Plant Phenomics. 2022;2022. https://doi.org/10.34133/2022/9760269
113. Девятовская А.Д., Бирючков Н.Е., Лях Т.В., Чайка К.В. Исследование SLAM-фреймворков для монокулярных мобильных роботов в проекте Duckietown. Вестник НГУ. Серия: Информационные технологии. 2021;19(4):36–49. https://doi.org/10.25205/1818-7900-2021-19-4-36-49
114. Терехов М.А. Обзор современных методов визуальной одометрии. Компьютерные инструменты в образовании. 2019;(3):5–14. https://doi.org/10.32603/2071-2340-2019-3-5-14
Ключевые слова: бездорожье, грунтовые дороги, определение препятствий, датчики глубины, классификация бездорожья, наборы данных
Для цитирования: Бычков А.М., Буланов А.А. Обзор и анализ технологий систем технического зрения, основанных на оптических датчиках для автоматического движения по грунтовым дорогам. Моделирование, оптимизация и информационные технологии. 2025;13(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1892 DOI: 10.26102/2310-6018/2025.49.2.045
Поступила в редакцию 12.04.2025
Поступила после рецензирования 02.06.2025
Принята к публикации 16.06.2025