МОДЕЛИРОВАНИЕ ВЫСОКОТЕМПЕРАТУРНОГО НАГРЕВА СТАЛЕФИБРОБЕТОНА
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

MODELING OF HIGH-TEMPERATURE HEATING OF STEEL-FIBROBETON

Young A.S.   Nikolenko S.D.   Sazonova S.A.  

UDC 53.072:691.32: 536.4
DOI:

  • Abstract
  • List of references
  • About authors

The work is devoted to the problem of physical simulation of high-temperature impact on dispersed-reinforced concrete. The results of experimental studies of the behavior of finegrained fine-grained concretes with metallic fiber (steel fiber-reinforced concrete), in the high-temperature effect modeled in the muffle furnace, are presented. The muffle furnace is selected on the basis of the required high-temperature exposure parameters. In particular, the maximum heating temperature, the rise time of the temperature to the required 8500C. All selected parameters are well correlated with the parameters of real fires. The medium of the working space of the muffle furnace when creating the temperature effect is air. One of the advantages of the selected muffle furnace is the ease of operation and sufficient stability of the maintained temperature. The technique of carrying out the experiment at different hightemperature effects on steel-fiber-reinforced concrete has been worked out. It is shown that the use of dispersed reinforcement in the form of metallic fibers improves the state of experimental samples after high-temperature exposure of a given level. It was revealed that the degree of influence of disperse reinforcement on the state of samples depends on the percentage of reinforcement and the magnitude of the temperature effect. It is shown that an increase in the time of high-temperature exposure affects the state of the samples. The results of the research will help further develop the process of physical simulation of hightemperature heating in the study of the properties of building materials.

1. Nikolenko S.D. Primenenie fibrovogo armirovaniya v zdaniyakh i sooruzheniyakh, raspolozhennykh v seysmoopasnykh rayonakh / S.D. Nikolenko // Sistemy zhizneobespecheniya i upravleniya v chrezvychaynykh situatsiyakh: Mezhvuzovskiy sbornik nauchnykh trudov. Voronezh: Voronezhskiy gosudarstvennyy tekhnicheskiy universitet, 2006. pp. 38-46.

2. Nikolenko S.D. Behaviour of concrete with a disperse reinforcement under dynamic loads / S.D. Nikolenko, E.A. Sushko, S.A. Sazonova, A.A. Odnolko, V.Ya. Manokhin // Magazine of Civil Engineering. 2017. No. 7(75). Pp. 3–14. DOI: 10.18720/MCE.75.1.

3. Enaleev R.Sh. Modelirovanie ognestoykosti betona pri vysokointensivnom nagreve / R.Sh. Enaleev, R.R. Dimukhametov, O.A. Tuchkova, O.Yu. Kharitonova // Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012. Tom 15. Vol. 10. pp. 88-95.

4. Enaleev R.Sh. Ognestoykost' elementov stroitel'nykh konstruktsiy pri vysokointensivnom nagreve / R.Sh. Enaleev, E.Sh. Telyakov, O.A. Tuchkova, O.Yu. Kharitonova, A.B. Kachalkin // Pozharovzryvobezopasnost'. 2010. Vol. 19. No.5. pp. 48-53.

5. Enaleev R.Sh. Kriterii ognestoykosti elementov stroitel'nykh konstruktsiy na pozharovzryvoopasnykh ob"ektakh / R.Sh. Enaleev, N.M. Barbin, E.Sh. Telyakov, O.L. Tuchkova, A.B. Kachalkin // Pozharovzryvobezopasnost'. 2011. Vol. 20. No.1. pp. 33-41.

6. Enaleev R.Sh. Ognestoykost' betona pri vysokointensivnom nagreve / R.Sh. Enaleev, E.Sh. Telyakov, S.V. Ananikov // Mezhdunarodnyy zhurnal eksperimental'nogo obrazovaniya. 2012. No.7. pp. 55-57.

7. Pertsev V.T. Beton povyshennoy termostoykosti dlya ognestoykikh zhelezobetonnykh izdeliy: monografiya / V.T. Pertsev, T.V. Zagoruyko, A.A. Ledenev // Voronezh: Voronezhskiy gosudarstvennyy tekhnicheskiy universitet, 2017. 102 s.

8. Rabinovich F.N. Kompozity na osnove dispersno armirovannykh betonov. Voprosy teorii i proektirovaniya, tekhnologiya, konstruktsii: monografiya / F.N. Rabinovich // M.: Izdatel'stvo ACB, 2004. 560 p

9. Korsun V. The Strength and Strain of High-strength Concrete Elements with Confinement and Steel Fiber Reinforcement Including the Conditions of the Effect of Elevated Temperatures / V. Korsun, N. Vatin, A. Franchi, A. Korsun, P. Crespi, S. Mashtaler // Procedia Engineering. 2015. No. 117. Pp. 970–979. DOI: 10.1016/j.proeng. 2015.08.192.

10. Golovanov V.I. Prochnostnye i teplofizicheskie svoystva betona s polipropilenovoy fibroy v usloviyakh temperaturnogo rezhima standartnogo pozhara / V.I. Golovanov, N.S. Novikov, V.V. Pavlov, E.V. Kuznetsova // Pozharovzryvobezopasnost'. 2017. Vol. No.5. pp. 37-44.

11. Novikov N.S. Ognestoykost' i prochnost' konstruktsiy iz fibrobetona / N.S. Novikov // Tekhnologii tekhnosfernoy bezopasnosti. 2016. No.3 (67). pp. 122-127.

12. Young-Sun Heo. Synergistic effect of combined fibers for spalling protection of concrete in fire / Young-Sun Heo, Jay G. Sanjayan, CheonGoo Han, Min-Cheol Han // Cement and Concrete Research. 2010. No 40. Pp. 1547-1554.

13. Pushenko A.S. Vysokoprochnyy beton v usloviyakh vozdeystviya vysokikh temperatur pri pozhare: dis. … kand. tekhn. nauk. Rostov-na-Donu, 2008. 217 p.

14. Yuh-Shiou Tai. Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800 °C / Yuh-Shiou Tai, Huang-Hsing Pan, Ying-Nien Kung // Nuclear Engineering and Design. 2011. Pp. 2416-2424.

15. Dorf V.A. Ognestoykost' vysokoprochnogo stalefibrobetona (analiticheskiy obzor) / V.A. Dorf, R.O. Krasnovskiy, D.E. Kapustin, P.S. Sultygova // Vestnik grazhdanskikh inzhenerov. 2017. No.4(63). pp. 72-80. DOI: 10.23968/1999-5571-2017-14-4-72-80.

16. GOST 30247.0–94. Konstruktsii stroitel'nye. Metody ispytaniy na ognestoykost'. Obshchie trebovaniya.

17. Swamy R.N. Fiber Reinforced Cement and Concrete / R.N. Swamy // Proceedings of the Fourth RILEM Internal Symposium. E & FN Spon, 1992. 1354 рр.

18. Barros J.A.O. Post-cracking behaviour of steel fibre reinforced concrete / J.A.O. Barros, V.M.C.F. Cunha, A.F. Ribeiro, J.A.B. Antunes // Materials and Structures. 2005. Vol. 38. No. January. Pp. 47-56.

19. Jafarifar N. Post-cracking tensile behaviour of steel-fibre-reinforced rollercompacted-concrete for FE modelling and design purposes / N. Jafarifar, K. Pilakoutas, H. Angelakopoulos, T. Bennett // Materiales de Construcción. 2017. Vol 67(326). No 326. April–June. e122. DOI: http://dx.doi.org/10.3989/mc.2017.06716.

Young Alexandra Sergeevna

Email: sandra-extra@mail.ru

Voronezh State Technical University

Voronezh, Russian Federation

Nikolenko Sergey Dmitrievich
Candidate of Technical Sciences, Associate Professor
Email: nikolenkoppb1@yandex.ru

Voronezh State Technical University

Voronezh, Russian Federation

Sazonova Svetlana Anatolievna
Candidate of Technical Sciences, Associate Professor
Email: Sazonovappb@vgasu.vrn.ru

Voronezh State Technical University

Voronezh, Russian Federation

Keywords: modeling, fine-grained concrete, high temperature heating, dispersionreinforced concrete, experimental study

For citation: Young A.S. Nikolenko S.D. Sazonova S.A. MODELING OF HIGH-TEMPERATURE HEATING OF STEEL-FIBROBETON. Modeling, Optimization and Information Technology. 2018;6(2). Available from: https://moit.vivt.ru/wp-content/uploads/2018/04/MolodayaSoavtori_2_18_1.pdf DOI: (In Russ).

510

Full text in PDF

Published 30.06.2018